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Summary

Noise is a frequently encountered problem in modern society. One of the envi-
ronments where the presence of noise causes a deterioration in people’s comfort
is in aircraft cabins. For modern aircraft flying at cruise conditions, the main
sound source is the turbulent boundary layer around the fuselage. Especially
in the mid and high frequency range (500-2000 Hz), this source significantly
contributes to the sound levels in the aircraft cabin. Passive noise reduction
methods can provide a suitable solution to many noise problems in this fre-
quency range. In the present study, a new passive noise reduction method
is presented, known as tube resonators. Tube resonators are well-known for
their application for sound absorption. However, in the present work, this type
of resonator is applied for the reduction of sound radiation and sound trans-
mission. The aim of this work is to investigate the applicability of this new
method and to develop and validate efficient models for the prediction of sound
radiation by and sound transmission through panels with tube resonators. For
a proper understanding of the influences of the different phenomena, different
models and experiments are presented in order of increasing complexity.

First, sound radiation and normal incidence sound transmission are stud-
ied using one-dimensional analytical models. The analyses are based on the
assumption that the panels are rigid and infinitely large. For narrow tube
resonators, viscothermal effects also play a role. These effects are included in
the models as well. Analysis results predict that, by the application of tube
resonators, large reductions of the radiated and transmitted sound power can
be obtained. The centre frequency of the range in which the sound is reduced
is the frequency for which a half, or odd multiples of a half, of the acoustic
wavelength is equal to the resonator length. The porosity of the panel de-
termines the frequencies for which maximum sound reduction is obtained in
this range. Validation of the model for sound radiation by means of exper-
iments in an impedance tube, shows a good agreement between model and
measurements.

To study the effect of scattering by the resonator openings, a two-dimen-
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sional semi-analytical model is presented, which is based on similar assump-
tions as the one-dimensional analytical model. It is shown that scattering
causes some inlet effects, but hardly influences the radiation and transmission
of sound.

Subsequently, a two-dimensional finite element model is introduced to in-
vestigate the transmission of sound through a panel with resonators mounted
between two rooms. For stiff panels, the trends of the transmission loss curves
are similar to those predicted by the one-dimensional analytical model. For
flexible panels, it is shown that mainly the flexibility of the resonators has a
large effect on the sound transmission loss.

To be able to model more complex and realistic setups, three three-dimen-
sional numerical models are presented. To reduce computation time, all models
are reduced in some way. The reductions both concern the structural part of
the model and the acousto-elastic interaction. First, the Rayleigh integral
method is used to calculate the sound radiated by a panel with resonators,
placed in an infinite baffle. It is shown that for a rigid panel, the boundaries of
the panel do not influence the radiated sound power as long as its dimensions
are larger than the acoustic wavelength. Furthermore, results for a baffled,
flexible panel are presented.

Next, a reduced finite element model is introduced. In this model the
panel is flexible; however, in the formulation of the acousto-elastic interaction,
the resonators are still assumed to be rigid. A new interface element is for-
mulated, which both includes the acousto-elastic interaction and the acoustic
behaviour of the resonators. Structural resonances of the panel appear to have
a large negative effect on the sound transmission loss. However, the general
trend of the transmission loss curve remains the same as predicted by the
one-dimensional analytical model.

To fully examine the influence of the flexibility of the resonators, finally,
a fully coupled finite element model of a small part of the panel with one
resonator is introduced. It is shown that the flexibility of the structure has a
large influence on the sound transmission loss.

To verify whether the assumptions and simplifications that were made in
the models are valid, sound transmission loss measurements were performed
on two resonator panels of different configurations: a panel with tubes and a
sandwich panel perforated on one side. Both measurements show that large
increases in sound transmission loss can be obtained by the application of tube
resonators. However, the increases are not as large as predicted by the models.
To improve the predictions of sound transmission through panels with tube
resonators, more detailed, large-scale models are required.



Samenvatting

Geluidsoverlast is een veelvuldig voorkomend probleem in de hedendaagse
samenleving. Zo wordt het comfort in een vliegtuigcabine mede bepaald
door de mate van geluidsoverlast. Voor moderne vliegtuigen vliegend on-
der kruisvluchtcondities is de turbulente grenslaag rondom de romp van het
vliegtuig de voornaamste geluidsbron. Vooral in het midden- en hoogfrequente
gebied (500-2000 Hz) draagt deze bron aanzienlijk bij aan het geluidsniveau in
de vliegtuigcabine. Een geschikte oplossing voor veel geluidsproblemen in dit
frequentiegebied is de toepassing van passieve geluidsreductiemethoden. In dit
proefschrift wordt een nieuwe passieve geluidsreductiemethode gepresenteerd,
de zogenaamde buisjesresonatoren. Buisjesresonatoren zijn bekend van hun
toepassing voor geluidsabsorptie. Echter, in het huidige werk wordt dit soort
resonatoren toegepast voor de reductie van geluidsafstraling en geluidstrans-
missie. Het doel van dit werk is het onderzoeken van de toepasbaarheid van
deze nieuwe methode en het ontwikkelen en valideren van efficiënte modellen
voor de voorspelling van geluidsafstraling en geluidstransmissie door pane-
len met buisjesresonatoren. Voor een goed begrip van de invloeden van de
verschillende fenomenen, worden er verschillende modellen en experimenten
gepresenteerd, in volgorde van toenemende complexiteit.

Allereerst worden de transmissie van loodrecht invallend geluid en geluids-
afstraling bestudeerd met behulp van ééndimensionale modellen. De analyses
zijn gebaseerd op de aanname dat de panelen star en oneindig groot zijn. Bij
buisjesresonatoren met een kleine diameter spelen ook viscothermische effecten
een rol. Deze effecten zijn eveneens meegenomen in de modellen. De resultaten
van de analyses voorspellen dat door toepassing van buisjesresonatoren grote
reducties van het afgestraalde en doorgelaten geluidsvermogen kunnen worden
verkregen. De centerfrequentie van het frequentiegebied waarin het geluid
wordt gereduceerd is de frequentie waarvoor een halve, of oneven veelvouden
van een halve, akoestische golflengte gelijk is aan de lengte van de resonator.
De porositeit van het paneel bepaalt de frequenties waarvoor maximale ge-
luidsreductie wordt verkregen in dit gebied. Validatie van het model voor
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geluidsafstraling door middel van experimenten in een impedantiebuis laat
een goede overeenkomst zien tussen model en metingen.

Om het effect van verstrooiing door de openingen van de resonatoren te
bestuderen, wordt een tweedimensionaal model gepresenteerd dat gebaseerd is
op soortgelijke aannamen als het ééndimensionale model. Er wordt aange-
toond dat verstrooiing inlaateffecten veroorzaakt, maar nauwelijks invloed
heeft op de afstraling en transmissie van geluid.

Vervolgens wordt een tweedimensionaal eindig elementenmodel gëıntrodu-
ceerd, om de transmissie van geluid door een paneel met resonatoren te on-
derzoeken dat is opgehangen tussen twee kamers. Voor stijve panelen zijn de
trends van transmissieverliescurven ongeveer gelijk aan de trends voorspeld
door het ééndimensionale analytische model. Voor flexibele panelen wordt
aangetoond dat vooral de flexibiliteit van de resonatoren een groot effect heeft
op het geluidstransmissieverlies.

Om complexere en realistischere opstellingen te kunnen modelleren, wor-
den er drie driedimensionale numerieke modellen gepresenteerd. Om de reken-
tijd te verminderen, zijn alle modellen op een bepaalde manier gereduceerd.
De reducties betreffen zowel het structurele deel van het model als de akoesto-
elastische interactie. Allereerst wordt de Rayleigh integraalmethode gebruikt
om het geluid te berekenen dat wordt afgestraald door een paneel met re-
sonatoren omringd door een oneindig groot, akoestisch hard oppervlak. Er
wordt aangetoond dat, als de afmetingen van het paneel groter zijn dan de
akoestische golflengte, de randen van een star paneel geen invloed hebben op
het afgestraalde geluidsvermogen. Verder worden er ook resultaten gepresen-
teerd voor een flexibel paneel omringd door een oneindig groot, akoestisch
hard oppervlak.

Vervolgens wordt er een gereduceerd eindig elementenmodel gëıntrodu-
ceerd. In dit model is het paneel flexibel, maar in de formulering van de
akoesto-elastische interactie worden de resonatoren nog steeds als star be-
schouwd. Een nieuw koppelelement wordt geformuleerd dat zowel de akoesto-
elastische interactie als het akoestische gedrag van de resonatoren bevat. Struc-
turele resonanties van het paneel blijken een groot negatief effect te hebben op
het geluidstransmissieverlies. Echter, de algemene trend van het transmissie-
verlies blijft gelijk aan die voorspeld door het ééndimensionale analytische
model.

Om de invloed van de flexibiliteit van de resonatoren volledig te onder-
zoeken, wordt er tenslotte een volledig gekoppeld eindig elementenmodel van
een klein gedeelte van het paneel met één resonator gëıntroduceerd. Er wordt
wederom aangetoond dat de flexibiliteit van de structuur een grote invloed



Samenvatting ix

heeft op het geluidstransmissieverlies.
Om te controleren of de aannames en vereenvoudigingen die in de modellen

zijn gemaakt, geldig zijn, zijn geluidstransmissieverliesmetingen uitgevoerd op
twee resonatorpanelen van verschillende configuraties: een paneel met buisjes
en een sandwichpaneel dat aan één kant geperforeerd is. Beide metingen laten
zien dat door de toepassing van buisjesresonatoren grote toenames van het
geluidstransmissieverlies kunnen worden verkregen. De gemeten toenames zijn
echter niet zo groot als voorspeld door de modellen. Om de voorspellingen van
geluidstransmissieverlies door panelen met buisjesresonatoren te verbeteren,
zijn gedetailleerdere, grootschalige modellen vereist.
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Chapter 1

Introduction

1.1 Background

Sound and noise

Sound is all around. Sometimes it is experienced as pleasant, sometimes as
unpleasant. Unwanted sound is generally referred to as noise. Noise encoun-
tered in daily life can, for example, be caused by domestic appliances such as
vacuum cleaners and washing machines, vehicles such as cars and aeroplanes,
or screaming neighbours.

Noise in aircraft cabins

Noise in aircraft cabins is mainly induced by the power plant (propeller and
engine) and the turbulent airflow over the fuselage. For modern aircraft flying
at cruise conditions, the main sound source is the turbulent boundary layer
[32, 56]. Pressure fluctuations in the boundary layer excite the fuselage, which
causes vibrations in the structure. The vibrations of the structure are sub-
sequently transmitted to the air inside the aircraft cabin, leading to pressure
perturbations that are usually experienced as sound. Sources of unwanted
sound like this may cause a lot of discomfort to the passengers. To enhance
the environmental comfort in aircraft cabins, a European project called FACE
(Friendly Aircraft Cabin Environment) was initiated. Besides the reduction of
aircraft interior noise, attention was also paid to issues like air quality control
and the utilisation of multimedia devices. Various European aircraft com-
panies, research institutes and universities were involved. The present work,
concentrating on noise reduction, was also carried out in the framework of
FACE.
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Noise reduction

Common methods of passive noise reduction are the use of porous materials
such as glass wool or foam [6, 15], double wall panels with thin air layers [1],
or the application of acoustic resonators. In the present work, the acoustic
behaviour of one type of acoustic resonator, so-called tube resonators, is in-
vestigated. To gain some insight into the working principle of the resonators,
a simple panel geometry is considered. A schematic representation of such a
panel with tube resonators is shown in Figure 1.1. The tubes are closed at
one end and open at the side where they are attached to the panel. Panels
like this could, for example, be used as trim panels in aircraft. In the present
study, the focus is mainly on the behaviour of the resonators with regard to
sound radiation and sound transmission. The emphasis in this thesis is on the
development and validation of analysis tools and the physical understanding of
phenomena that play a role. Analyses found in the literature, state that noise
generated by turbulent boundary layers significantly contributes to the mid
and high frequency range of sound power levels in aircraft cabins [4, 24, 56].
Measurements by Bhat and Wilby [4] show that the highest sound power levels
are found in the frequency range of 500-2000 Hz. This frequency range is also
the frequency range of interest in this work.

Plate
Tube resonator

Figure 1.1: Part of a panel with tube resonators.
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1.2 Sound transmission

Reduction of sound transmission versus sound absorption

Tube resonators are well known for their absorption applications [23]. In the
case of sound absorption, sound is dissipated by mechanisms such as viscous
shear and thermal conductivity. The sound that is reflected from a sound
absorbing wall or panel is therefore smaller in magnitude than the incident
sound, which means that the sound level in a room can be reduced (see Figure
1.2(a)).

When considering sound absorption, the panel or wall is generally assumed
to be rigid and non-vibrating. Besides the reduction of the sound reflected by
a non-vibrating panel, resonators also enable the reduction of sound radiated
by a vibrating panel. In this thesis, the possibilities for the application of tube
resonators for the latter purpose are investigated.

Sound source

Receiver

(a) Sound absorption.

Sound source

Receiver

(b) Sound transmission.

Figure 1.2: Reduction of sound transmission versus sound absorption.

When a structure is vibrating, it excites the surrounding air, which causes
radiation of sound. The structure can either be excited by a structural force
or an acoustic sound field. To better understand the important aspects of
sound insulation by means of tube resonators, most analyses in this work
start by considering the general case of sound radiation. This means that the
radiated sound is calculated for a panel which is assumed to vibrate with a
certain given velocity distribution. Since the origin of these vibrations can
either be structural or acoustic, the insights that are gained can be used for
the reduction of both types of excitation. By subsequently applying acoustic
excitation, the models for sound radiation are extended to models for sound
transmission (see Figure 1.2(b)).
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Basic principles of sound transmission

The conventional measure for sound insulation of panels is the sound trans-
mission loss, which is the ratio of the incident and transmitted sound powers
in logarithmic form. In Figure 1.3 a typical sound transmission loss curve of
an isotropic panel without resonators is shown. In this figure, the following
regions can be distinguished:

• Below the first eigenfrequency fe of the system, the sound transmission
loss is primarily determined by the stiffness and decreases with frequency
at 6 dB per doubling of frequency.

• At the first eigenfrequency fe, the transmission of sound is large and,
consequently, the transmission loss passes through a minimum. The
depth of the dip is mainly determined by the damping in the system [6].

• Above the first eigenfrequency fe, the sound transmission loss is primar-
ily determined by the mass per unit area of the panel. In this frequency
range, the sound transmission loss is described by the so-called mass law,
which implies that transmission loss increases with 6 dB per doubling
of frequency and 6 dB per doubling of mass per unit area. The sound
transmission loss also depends on the angle of the incident sound wave.
In the mass law region, the transmission loss decreases with increasing
angle of incidence.

Frequency [Hz]

T
ra

ns
m

is
si

on
lo

ss
[d

B
]

Stiffness controlled (6 dB/octave)

Mass controlled (6 dB/octave)

Stiffness controlled (18 dB/octave)

Damping controlled

Damping controlled

fe fc

Figure 1.3: Typical sound transmission loss curve of an isotropic panel without resonators
(frequency on logarithmic scale).
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• At higher frequencies, above the so-called critical frequency fc, coinci-
dence occurs. Coincidence occurs if the bending wavelength of the panel
is equal to the projected wavelength of the obliquely incident sound wave
(see also Section 5.3.3). In this case, there is a very good coupling of
energy from the incident wave to the bending wave, which makes the
panel radiate sound efficiently to the other side [34]. The panel acts as if
it is transparent to incident sound waves and the sound waves are freely
transmitted [5]. This causes a dip in the transmission loss curve. The
depth of the coincidence dip depends on the damping of the panel.

The extent of the mass law region depends on the ratio of mass and
stiffness of the panel. Generally, the mass law is only accurate up to half
the critical frequency [6].

• At very high frequencies, the sound transmission loss increases again,
being stiffness controlled. The increase in transmission loss is in the
order of 18 dB per doubling of frequency [20].

In the present work, the focus is primarily on the frequency range in which
panels behave according to the mass law. It is obvious that the sound insulat-
ing properties of a panel in this range can be improved by increasing the mass
of the panel. However, in practice it is often desired to design structures of
minimum weight. Generally, the challenge is therefore to reduce the transmis-
sion of sound without increasing the mass of the construction. To assess the
performance of the tube resonators, in this thesis, a comparison is accordingly
made with panels of the same mass without resonators.

1.3 Noise reduction with tube resonators

Tube resonators for sound absorption

The working principle of tube resonators for sound absorption is based on the
resonance of air inside the resonators. Inside the resonators, resonance occurs
when a quarter, and odd multiples of a quarter, of the acoustic wavelength1

are equal to the resonator length. At these frequencies, maximum sound ab-
sorption takes place. Tube resonators are therefore also called quarter-wave
resonators. Another important condition, for more broadband sound absorp-
tion, is the presence of viscothermal effects. These effects are mainly deter-
mined by the frequency and the radius of the resonators. An example of a

1The acoustic wavelength λ is defined as λ = c0/f , where c0 is the speed of sound and f
is the frequency.
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typical sound absorption curve of a wall or panel with quarter-wave resonators
is shown in Figure 1.4(a)2. The absorption characteristics of such a panel can
be optimised by tuning three parameters. As mentioned before, the resonator
length determines the main frequencies at which sound is absorbed, and the
resonator radius and the porosity3 of the panel determine the height and the
width of the absorption peaks. One of the disadvantages of quarter-wave res-
onators is that, generally, sound is only absorbed in a small frequency band
around the resonance frequencies of the air inside the resonators. For broad-
band sound absorption, coupled tubes [18], resonators with different lengths
and radii [31, 54], or very narrow tubes and high porosities can be used.
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(a) Absorption coefficient (Ω = 0.04).
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(b) Insertion loss (Ω = 0.5).

c0/4L c0/2L 3c0/4L

Figure 1.4: Sound absorption and sound radiation characteristics of a panel with res-
onators of length L = 0.11 m and radius R = 2.5 · 10−3 m.

Tube resonators for the reduction of sound radiation

The working principle of tube resonators for the reduction of sound radiation
is different than for sound absorption. In the case of sound radiation, the
reduction is only partly achieved by resonance of the air inside the resonators
and viscothermal effects play a much less important role. The centre frequency
of the frequency range in which the sound is reduced is now the frequency for
which a half, or odd multiples of a half, of the acoustic wavelength is equal to

2The calculations were made using a one-dimensional analytical model, including vis-
cothermal effects.

3The porosity of the panel is defined as the ratio of the sum of the cross-sectional areas
of the resonators and the total area of the panel.
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the resonator length. The frequencies for which sound reduction is maximal
are not only related to the length of the resonators, but also depend on the
porosity of the panel.

The basic principle of sound reduction is based on local minimisation of
the volume velocity of small partitions of the panel; a method that is also
used in active acoustic control [38, 47]. If the volume velocities of the sound
at the surface of the panel and at the entrance of the resonators are equal in
magnitude but opposite in phase, they cancel out each other and no sound is
radiated from the panel. Ross and Burdisso [43] applied a similar, mechani-
cal principle for passive noise reduction by means of so-called weak radiating
cells. The major drawback of their concept is that, besides large reductions
of radiated sound, also large amplifications occur due to resonances of the
mechanical system. A schematic representation of the weak radiating cell and
the tube resonator is shown in Figure 1.5.

Vibrating structure

Rigid plate

Cavity

Radiated sound field

(a) Weak radiating cell.

Vibrating structure

Radiated sound field

(b) Tube resonator.

Figure 1.5: Weak radiating cell versus tube resonator.

An example of a typical insertion loss curve for a rigid, vibrating panel
with tube resonators is shown in Figure 1.4(b)4. The insertion loss is defined
as the difference in radiated sound power between a panel with resonators
and a panel without resonators. Both curves in Figure 1.4 are calculated for
resonators with the same geometry. It is seen that the frequency range in
which the radiated sound is reduced is broader than for sound absorption.
The sound reducing properties of the structure can again be optimised by
tuning the length and the radius of the resonators, and the porosity of the
panel. Also, resonators of different lengths and radii can be used.

4The calculations were made using a one-dimensional analytical model, including vis-
cothermal effects.
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1.4 Problem definition

The aim of this study is to develop and validate efficient models for the pre-
diction of sound radiation by and sound transmission through panels with
tube resonators. The models are used to investigate the possibilities for the
application of tube resonators for sound insulation5.

1.5 Outline

For a proper understanding of the influences of the different phenomena, the
models and experiments in this thesis are presented in order of increasing
complexity.

In Chapter 2, the behaviour of panels with tube resonators is studied using
different one-dimensional analytical models. The panels are assumed to be
rigid and infinitely large. Because of the simplicity of the models, more insight
is gained into the working principle of the resonators. Both sound radiation
and normal incidence sound transmission are considered. For narrow tube
resonators, viscothermal effects also play a role. These effects are included in
the models as well. The model for sound radiation is validated by means of
experiments in an impedance tube.

In Chapter 3, two two-dimensional models are presented. First, a two-
dimensional semi-analytical model is presented to study the effect of scat-
tering by the resonator openings. The panels are again assumed to be rigid
and infinitely large. Both sound radiation and normal incidence sound trans-
mission are considered. Second, a two-dimensional finite element model is
presented to investigate the transmission of sound through a panel with res-
onators mounted between two rooms. In this model, the influences of the
flexibility and the boundedness of the panel, as well as the randomness of the
incident sound are taken into account.

In Chapter 4, three three-dimensional models are presented. First, the
Rayleigh integral method is used to calculate the sound radiated by a panel
with resonators, placed in an infinite baffle. With this model, the influence of
the boundaries of the panel is studied. Subsequently, a reduced finite element
model is presented. In the structural model, the panel is flexible; however,
in the formulation of the acousto-elastic interaction, the resonators are still
assumed to be rigid. To fully examine the influence of the flexibility of the
resonators, finally, a fully coupled finite element model of a small part of a
flexible panel with one resonator is introduced.

5This concept, as schematically shown in Figure 1.5(b), has been patented [55].
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To verify whether the assumptions and simplifications that were made in
the models are valid, sound transmission loss measurements were performed on
two resonator panels of different configurations. The experiments, the results
and the validation of the models are presented in Chapter 5.

Finally, in Chapter 6, conclusions are drawn and recommendations are
made for further research. Table 1.1 shows an overview of the analysis methods
and the cases that are presented in this thesis.
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Chapter 2

One-dimensional modelling
and experimental validation

2.1 Introduction

In this chapter, different one-dimensional analytical models are described to
study the radiation of sound by and the transmission of sound through panels
with tube resonators. The advantage of these models is that they are rela-
tively simple and, therefore, provide good insight into the working principle
of the resonators. In the initial phase of a design, they can be used as fast
analysis tools to make a rough comparison of the performance of different con-
figurations. Moreover, they can serve as a stepping stone to the development
of more sophisticated models.

Starting point for the analyses is the idealised case of an infinitely large,
rigid panel with resonators. A schematic representation of the system is shown
in Figure 2.1. Because of the repetitive pattern of resonators in the panel, the
panel can be divided into a number of so-called characteristic areas, each area
containing one resonator (see Figure 2.1). The dimensions of the characteristic
areas are assumed to be small compared to the acoustic wavelength.

Now, make the assumption that the structure is vibrating with a certain
uniform harmonic velocity vs in the direction perpendicular to the surface
(see Figure 2.1). Since the panel is assumed to be rigid and infinitely large,
the vibration only generates sound waves in that particular direction. At the
boundaries of the characteristic areas, at a small distance from the panel, the
fluid velocity w in the direction parallel to the surface is zero (see Figure 2.1).
This means that the boundaries can be regarded as symmetry planes and the
sound radiated by the panel can be determined with a one-dimensional model
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of only one such characteristic area.

Characteristic area

Radiated sound
waves

Symmetry plane

vs

vs

vs

w = 0

w = 0

Figure 2.1: Part of a panel with resonators divided into characteristic areas - panel with
tubes.

To model the acoustics of a panel with tube resonators, first the propa-
gation of sound waves inside and around the axially vibrating resonators has
to be known. In Section 2.2, expressions are derived for the pressures and
acoustic fluid velocities in these two parts. In the first part of Section 2.3,
these expressions are used to model the sound radiation by a panel with tube
resonators, vibrating with a certain uniform harmonic velocity in normal di-
rection. The vibrations can either be induced by structural or by acoustic
excitation. In the second part of Section 2.3, the model for sound radiation
is extended to models for normal incidence sound transmission through two
different panel configurations. The vibrations of the panel are acoustically
induced now. In Section 2.4, the influence of different parameters on the ra-
diation of sound by and the transmission of sound through a panel with tube
resonators is demonstrated. In Section 2.5, the model for sound radiation is
validated by means of experiments in an impedance tube.

2.2 Viscothermal wave propagation

In this section, the propagation of sound waves inside and around the axially
vibrating resonators is described. Figure 2.2 shows a schematic representation
of a characteristic area with the two air volumes that are considered.
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Air around the resonator

Air inside the resonator

Figure 2.2: Different air containing parts of a characteristic area.

Usually, for wave propagation in air, only the effects of inertia and com-
pressibility are taken into account. However, near the surface of a structure
generally a so-called boundary layer is present, where viscosity and thermal
conductivity also play an important role. If the dimensions of the acoustic
domain perpendicular to the propagation direction are of the same order of
magnitude as the boundary layer thickness, these so-called viscothermal effects
cannot be neglected. The model that is used in this section takes into account
both the effects of inertia and compressibility, and the effects of viscosity and
thermal conductivity. This means that the solutions can also be applied for
narrow tubes.

The model that is used here is the so-called low reduced frequency model,
which was first introduced by Zwikker and Kosten [60]. An extensive overview
of different analytical solutions for viscothermal wave propagation, presented
by Tijdeman [50] and Beltman [2], shows that it is a very accurate and efficient
model. In the work of Tijdeman, the solutions for the propagation of sound
waves in cylindrical tubes were expressed in terms of a number of dimensionless
parameters. The representation of the low reduced frequency model in terms
of these dimensionless parameters is also the basis for the derivations of the
acoustic variables in this section. However, because the panel and thus the
resonators are vibrating here, different boundary conditions are applied.

First, the formulation of the low reduced frequency model is presented for
cylindrical geometries. Next, the solutions are derived for the propagation of
sound waves inside and around the resonators, respectively.

2.2.1 Low reduced frequency model

The basic equations governing the propagation of sound waves are the lin-
earised Navier-Stokes equations, the equation of continuity, the equation of
state for an ideal gas and the energy equation. In the absence of mean flow,
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these equations can be written as [7]:

ρ0
∂ṽ
∂t

= −∇p̃ +
(

4
3
μ + μb

)
∇ (∇ · ṽ) − μ∇× (∇× ṽ) (2.1)

ρ0 (∇ · ṽ) +
∂ρ̃

∂t
= 0 (2.2)

p̃ = ρ̃R0T̃ (2.3)

ρ0Cp
∂T̃

∂t
= λT ΔT̃ +

∂p̃

∂t
(2.4)

where ṽ is the fluid velocity, p̃ is the pressure, ρ̃ is the density, T̃ is the tem-
perature, ρ0 is the mean density, μ is the dynamic viscosity, μb is the bulk
viscosity, R0 is the gas constant1, Cp is the specific heat at constant pressure,
λT is the thermal conductivity, and t is time. The operator ∇ is the gradient
and Δ is the Laplace operator. For linear viscothermal wave propagation, the
following assumptions are made: small harmonic perturbations, no mean flow,
no internal heat generation, homogeneous medium, and laminar flow. For con-
venience, the acoustic variables are made dimensionless using the undisturbed
conditions:

ṽ = veiωt = c0v̌eiωt (2.5)

p̃ = p0 + peiωt = p0

(
1 + p̌eiωt

)
(2.6)

ρ̃ = ρ0 + ρeiωt = ρ0

(
1 + ρ̌eiωt

)
(2.7)

T̃ = T0 + Teiωt = T0

(
1 + Ť eiωt

)
(2.8)

where c0 is the speed of sound, p0 is the mean pressure, T0 is the mean temper-
ature, i is the imaginary unit, and ω is the angular frequency2. Furthermore,
the following dimensionless cylindrical coordinates are introduced (see Figure
2.3):

ξ = kx η =
r

l
(2.9)

where k = ω/c0 the wave number and l is the characteristic length scale. The
characteristic length scale can, for example, represent the layer thickness or the
tube radius. In the low reduced frequency model, some additional assumptions
are made that lead to a relatively simple but accurate model. These additional
assumptions are:

1R0 = Cp − Cv, where Cv is the specific heat at constant volume.
2In this work, only small acoustic perturbations upon the atmospheric conditions are

considered. For convenience, p is therefore further referred to as pressure and v as fluid
velocity.
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• the acoustic wavelength is large compared to the characteristic length
scale;

• the acoustic wavelength is large compared to the boundary layer thick-
ness.

Using these assumptions and neglecting the bulk viscosity [2], the basic equa-
tions (2.1) to (2.4), written in cylindrical coordinates, reduce to:

iv̌ = −1
γ

∂p̌

∂ξ
+

1
s2

[
∂2v̌

∂η2
+

1
η

∂v̌

∂η

]
(2.10)

0 = −1
γ

∂p̌

∂η
(2.11)

iκρ̌ = −
[
κ

∂v̌

∂ξ
+

∂v̌

∂η
+

v̌

η

]
(2.12)

p̌ = ρ̌ + Ť (2.13)

iŤ = i
γ − 1

γ
p̌ +

1
σ2s2

[
∂2Ť

∂η2
+

1
η

∂Ť

∂η

]
(2.14)

where v̌ and w̌ are the dimensionless fluid velocities in axial and radial direc-
tion, respectively. Furthermore, the following dimensionless parameters are
introduced:

shear wave number s = l

√
ρ0ω

μ
(2.15)

reduced frequency κ = lk (2.16)

square root of Prandtl number σ =
√

μCp

λT
(2.17)

ratio of specific heats γ =
Cp

Cv
(2.18)

where Cv is the specific heat at constant volume. The parameters σ and γ
only depend on the material properties of the gas. The two most important
parameters are the shear wave number and the reduced frequency. The re-
duced frequency κ represents the ratio between the thickness of the air layer
and the acoustic wavelength. The shear wave number s is a measure for the
amount of inertial effects compared to the amount of viscous effects. For large
shear wave numbers the inertial effects dominate, whereas for small shear wave
numbers the viscous effects are dominant. In physical terms, the shear wave
number is the ratio between the thickness of the air layer and the unsteady
boundary layer thickness3. The two additional assumptions of the low reduced

3The shear wave number is also called the unsteady Reynolds number.
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frequency model imply that κ � 1 and κ/s � 1.
In the next sections, solutions are derived for the pressure and the fluid

velocity in axial direction by solving equations (2.10) to (2.14) for different
boundary conditions. From equation (2.11) it follows that the pressure is
constant over the cross-section of the cylindrical geometry.

2.2.2 Axially vibrating cylindrical tube

The air inside the resonator is enclosed by a cylindrical tube. Since the panel
vibrates, the tubes also vibrate. Tijdeman [50] presented the low reduced
frequency solution for a non-vibrating cylindrical tube. In this section, the
low reduced frequency model is adjusted to include the effects of the axially
vibrating walls as well. The coordinate system of a cylindrical tube, vibrating
harmonically in axial direction with a dimensionless velocity v̌s = vs/c0, is
shown in Figure 2.3. The characteristic length scale is equal to l = R.

R

vs

r, η, w x, ξ, v

Figure 2.3: Axially vibrating cylindrical tube.

Low reduced frequency solution

The boundary conditions of the axially vibrating cylindrical tube can be for-
mulated as follows:

v̌ = v̌s , w̌ = 0 , Ť = 0 at η = 1 (2.19)
w̌ = 0 at η = 0 (2.20)

By applying these boundary conditions to equations (2.10) to (2.14), the acous-
tic variables are solved in the same way as presented by Tijdeman [50]. The
solution for the pressure p is the same as for a non-vibrating cylindrical tube4:

p(ξ) = AeΓξ + Be−Γξ (2.21)

where A and B are the complex amplitudes of backward and forward travelling
waves, respectively, determined by the boundary conditions at the beginning

4Note that, for brevity, the dimensional solutions of the variables are written as a function
of the dimensionless coordinates.
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and the end of the tube. The propagation coefficient Γ is defined as:

Γ =

√
1

N(s)
γ

n
(2.22)

with:

N(φ) =
J2(i3/2φ)
J0(i3/2φ)

(2.23)

where J0 and J2 are the Bessel functions of the first kind of order 0 and 2, and
n is the polytropic coefficient, given by:

n =
[
1 +

γ − 1
γ

N(sσ)
]−1

(2.24)

The solution for the fluid velocity v in axial direction can be written as:

v(ξ, η) =
iΓ

ρ0c0

[
1 − J0(i3/2sη)

J0(i3/2s)

] [
AeΓξ − Be−Γξ

]
+ vs

J0(i3/2sη)
J0(i3/2s)

(2.25)

The first term of this equation is identical to the solution of a non-vibrating
cylindrical tube. The second term in equation (2.25) accounts for the effect of
the axially vibrating walls. This term only depends on the shear wave number,
which means that in the present model no additional effects of heat conduction
are introduced by the vibrating wall. The solutions of the other variables, w,
ρ and T , are the same as for a non-vibrating cylindrical tube. They can be
found in the work of Tijdeman [50].

Velocity profile

Figure 2.4 shows the influence of the shear wave number on the two terms
of equation (2.25) which determine the shape of the velocity profile. The
magnitude of the terms is plotted as a function of the dimensionless radius η.
It is noted that the equation for the fluid velocity is complex, which means
that not all points pass their equilibrium position at the same time.

As can be seen, for small values of the shear wave number, the viscous ef-
fects dominate and the velocity profile is parabolic; a so-called Poiseuille profile
is approached. In this case, the magnitude of the second term approaches one
and the prescribed velocity at the walls influences the velocity profile over the
entire cross-section (see Figure 2.4(b)).

For large values of the shear wave number, the inertial effects dominate
and a nearly flat velocity profile is obtained. The magnitude of the second
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term approaches zero now, which means that the prescribed velocity at the
walls hardly influences the velocity profile. Figure 2.4(a) shows that in this
case the magnitude of the first term approaches one. Hence, for large values of
the shear wave number, equation (2.25) converges to the solution for standard
acoustic wave propagation5. The same holds for the pressure described by
equation (2.21). In the case of standard acoustic wave propagation, Γ = i and
n = γ. Under this condition, the solutions for the variables are independent
of the cross-sectional shape of the tube and the conditions at the walls.

0 0.5 1 1.5
−1

−0.5

0

0.5

1

∣∣∣iΓ [
1 − J0(i3/2sη)

J0(i3/2s)

]∣∣∣ [-]

η
[-

]

s = 1
s = 2
s = 5
s = 10
s = 100

(a)

0 0.5 1 1.5
−1

−0.5

0

0.5

1

∣∣∣J0(i3/2sη)

J0(i3/2s)

∣∣∣ [-]

η
[-

]

(b)

Figure 2.4: Magnitude of terms of equation (2.25) determining the shape of the velocity
profile, plotted for different values of the shear wave number.

For the models described in Section 2.3, the axial velocity as defined by
equation (2.25) is averaged over the cross-section of the tube. This leads to
the following expression:

v̄(ξ) = − iγ
Γn

1
ρ0c0

[
AeΓξ − Be−Γξ

]
+ vs

[ γ

Γ2n
+ 1

]
(2.26)

In the other sections, the bar will be omitted, so the symbol v is used for the
velocity in axial direction averaged over the cross-section.

2.2.3 Cylindrical layer with axially vibrating inner wall and
symmetry conditions at outer boundaries

For determining the sound transmission through a panel with resonators, not
only the propagation of sound waves inside the resonators has to be known,

5The standard acoustic solutions for the pressure and the axial velocity are obtained by
solving the one-dimensional Helmholtz equation and Euler’s equation, respectively. The air
is assumed to be inviscid and no effects of thermal conductivity are taken into account.
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but also the propagation of sound waves around the resonators. The cross-
sectional shape of the air volume around a resonator is shown in Figures 2.2
and 2.5. At the circular inner boundaries, the acoustically hard walls of the
resonator are vibrating harmonically in axial direction with a dimensionless
velocity v̌s = vs/c0. At the square outer boundaries of the characteristic area,
symmetry conditions apply, i.e. the derivative of any variable in that direction
is zero.

b

b

Ri
Ri

Ro

vsvs

Original geometry Cylindrical layer

Figure 2.5: Approximation of the square outer boundaries of the characteristic area by a
circle with an equivalent radius Ro.

To derive the low reduced frequency solution for this configuration, it is
more convenient to have equally shaped boundaries. In Appendix A.1 it is
shown that the main parameters of the low reduced frequency model for a
tube with a circular and a square cross-section are nearly equal if the shear
wave numbers of both geometries are the same. The square outer boundaries
of the air layer are therefore approximated by a circle with an equivalent radius
Ro (see Figure 2.5). In this way, a cylindrical layer is obtained, for which the
equations of the low reduced frequency model are more convenient to solve.
The equivalent radius Ro is chosen such that the shear wave number of the
original geometry is the same as the shear wave number of the cylindrical
layer. The definition of the shear wave number is given by equation (2.15).
For a tube of arbitrary cross-sectional shape, the characteristic length scale l
in this expression can be defined as [42, 48]:

l =
2S

P
(2.27)

where S is the cross-sectional area, and P is the wetted perimeter6. The
wetted perimeter is the perimeter of the structure which is in contact with the
air. For both geometries, this parameter equals the perimeter of the resonator,

6The characteristic length scale is defined here as twice the so-called hydraulic radius.
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since only here a wall is present, and thus a viscous boundary layer. Since the
wetted perimeter is the same in both cases, the cross-sectional areas also have
to be equal. For a square characteristic area of width b, this condition leads
to the following expression for the equivalent radius:

Ro =
b√
π

(2.28)

Cylindrical layer

Figure 2.6 shows the coordinate system of a cylindrical layer with an acousti-
cally hard, axially vibrating inner wall and symmetry conditions at the outer
boundaries. According to equation (2.27), the characteristic length scale l can
be written as:

l =
R2

o − R2
i

Ri
(2.29)

where Ri is the inner radius of the cylindrical layer.

Ro

vs

r, η, w x, ξ, v Ri

Figure 2.6: Cylindrical layer with axially vibrating inner wall and symmetry conditions at
the outer boundaries.

Low reduced frequency solution

With ηi = Ri/l and ηo = Ro/l defined as the dimensionless inner and outer
radius, respectively, the boundary conditions can be formulated as follows:

v̌ = v̌s , w̌ = 0 , Ť = 0 at η = ηi (2.30)

∂v̌

∂η
= 0 , w̌ = 0 ,

∂Ť

∂η
= 0 at η = ηo (2.31)

By applying these boundary conditions to equations (2.10) to (2.14), the acous-
tic variables can be solved (see Appendix A.2). The solution for the pressure
p is similar to that of a non-vibrating cylindrical tube:

p(ξ) = AeΓξ + Be−Γξ (2.32)
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where the propagation coefficient Γ is again described by equation (2.22).
However, the function N(φ) in this equation is now given by:

N(φ) = −1 +
2

η2
o − η2

i

1√
iφ

{
D1(φ)

[
ηoI1(

√
iφηo) − ηiI1(

√
iφηi)

]
+

−D2(φ)
[
ηoK1(

√
iφηo) − ηiK1(

√
iφηi)

]}
(2.33)

where:

D1(φ) =
K1(

√
iφηo)

I0(
√

iφηi)K1(
√

iφηo) + K0(
√

iφηi)I1(
√

iφηo)
(2.34a)

D2(φ) =
I1(

√
iφηo)

I0(
√

iφηi)K1(
√

iφηo) + K0(
√

iφηi)I1(
√

iφηo)
(2.34b)

In these expressions, I0, I1, K0 and K1 are the modified Bessel functions of the
first and second kind of order 0 and 1, respectively. The solution is written
in terms of modified Bessel functions to avoid some numerical problems that
arise with the ordinary Bessel functions. The solution for the axial velocity v
can be written as:

v(ξ, η) =
iΓ

ρ0c0
D(s, η)

[
AeΓξ − Be−Γξ

]
+

+ vs

[
D1(s)I0(

√
isη) + D2(s)K0(

√
isη)

]
(2.35)

with:
D(s, η) = 1 − D1(s)I0(

√
isη) − D2(s)K0(

√
isη) (2.36)

As in the expression for the axially vibrating cylindrical tube, the second term
in equation (2.35) accounts for the effect of the vibrating wall. It does not
introduce any additional effects of heat conduction.

Velocity profile

Figure 2.7 shows the influence of the shear wave number on the two terms
of equation (2.35) which determine the shape of the velocity profile. The
magnitude of the expressions is plotted as a function of the dimensionless
radius η. The influence of the shear wave number is similar to that for an
axially vibrating cylindrical tube. For large values of the shear wave number,
equations (2.32) and (2.35) converge to the solutions for standard acoustic
wave propagation.
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Figure 2.7: Magnitude of the two terms of equation (2.35) determining the shape of
velocity profile, plotted for different values of the shear wave number (Ri/Ro = 0.4).

For the models described in Section 2.3, the velocity in axial direction as
defined by equation (2.35) is averaged over the cross-section of the layer. This
leads to the following expression:

v̄(ξ) = − iγ
Γn

1
ρ0c0

[
AeΓξ − Be−Γξ

]
+ vs

[ γ

Γ2n
+ 1

]
(2.37)

It should be noted that this equation has the same form as the expression for
the axial velocity in an axially vibrating cylindrical tube. Only the propagation
coefficient Γ and the polytropic coefficient n are defined differently now. In
the other sections, the bar will be omitted, so the symbol v is used for the
velocity in axial direction averaged over the cross-section.

2.3 One-dimensional analytical models

In this section, two one-dimensional models are presented to describe the sound
radiated by and transmitted through a panel with tube resonators.

2.3.1 Sound radiation

Figure 2.8 shows the model of a characteristic area of a panel with tube res-
onators. The model consists of two parts: the sound field inside the resonator
and the radiated sound field in front of the panel. The pressure p1 and the
axial velocity v1 inside the resonator are described by equations (2.21) and
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(2.26), respectively. For the pressure p2 and the axial velocity v2 of the ra-
diated sound field, the standard acoustic solutions are used. The sound field
in the resonator is defined with reference to the axial coordinate xI and the
radiated sound field is defined with reference to coordinate xII (see Figure 2.8).
A1 and B1 are the pressure amplitudes of the backward and forward travelling
sound waves in the resonator, respectively. B2 is the pressure amplitude of the
radiated sound wave. These amplitudes are determined by the boundary con-
ditions of the system. Since the sound is radiated to the far field, no reflection
is assumed to take place and the pressure amplitude A2 equals zero.
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Figure 2.8: Model of sound radiation by a rigid characteristic area.

Assuming that the plate and the resonator vibrate harmonically with the
same normal velocity vs, three boundary conditions can be formulated. The
first boundary condition states that the fluid velocity at the end of the res-
onator is equal to the velocity of the structure (no-slip condition). At the
entrance of the resonator, the pressure is assumed to be continuous and con-
servation of mass is applied for the control volume cvI, indicated by the dashed
lines in Figure 2.8. All together, these boundary conditions can be written as:

v1|xI=0 = vs (2.38)

p1|xI=L = p2|xII=0 (2.39)

v1|xI=L Sr + vs (S − Sr) = v2|xII=0 S (2.40)

where Sr is the cross-sectional area of the resonator, S is the characteristic
area, and L is the effective length of the resonator. Due to inlet effects at the
entrance of the resonator, the effective length of the resonator is slightly larger
than the physical length of the resonator (see Section 2.5). By applying these
boundary conditions to equations (2.21) and (2.26), the unknown pressure
amplitudes A1, B1 and B2 can be solved for a given structural velocity vs.
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Subsequently, the radiated sound power is determined as will be described in
Section 2.4.1.

2.3.2 Sound transmission

In this section, one-dimensional analytical models are presented to predict the
transmission of sound through two panel configurations. One is a thin plate
with tubes attached to it (see Figure 2.1), referred to here as panel with tubes.
The other is a sandwich panel with one of the plates perforated (see Figure 2.9),
referred to here as sandwich panel. The advantage of the last configuration
is that it can be manufactured easily, for example, by perforating one of the
skin panels of a common honeycomb sandwich panel. In both cases, normal
incident plane waves are considered.

Characteristic area

Transmitted
Reflected
Incident

Symmetry plane

vs

vs

vs

w = 0

w = 0

Figure 2.9: Part of a panel with resonators divided into characteristic areas - sandwich
panel.

Panel with tubes

Figure 2.10 shows the model of a characteristic area of a panel with tubes.
The model consists of four parts: the sound fields in front of the panel, behind
the panel, inside the resonator and around the resonator. Due to acoustic
excitation, the structure is assumed to vibrate harmonically with an unknown
normal velocity vs. The sound fields at the right-hand side of the panel are
modelled in the same way as in the previous section. The pressure p3 and the
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axial velocity v3 around the resonator are described by equations (2.32) and
(2.37), respectively. For the pressure p4 and the axial velocity v4 of the incident
sound field, the standard acoustic solutions are used. Both sound fields are
defined with reference to coordinate xI (see Figure 2.10). A3 and B3 are the
pressure amplitudes of the backward and forward travelling waves around the
resonators, respectively, and A4 and B4 are the pressure amplitudes of the
incident and reflected sound waves, respectively. These pressure amplitudes,
as well as the structural velocity vs, are determined by the boundary conditions
of the system and the equation of motion.
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Figure 2.10: Model of normal incidence sound transmission through a rigid characteristic
area - panel with tubes.

For the right-hand side of the panel, the boundary conditions described
by equations (2.38) to (2.40) remain the same. Additionally, at the left-hand
side of the panel similar boundary conditions have to be satisfied:

v3|xI=L = vs (2.41)

p3|xI=0 = p4|xI=0 (2.42)

v3|xI=0 (S − Sr) + vs Sr = v4|xI=0 S (2.43)

Furthermore, equilibrium of forces is required for the entire system:

p4|xI=0 Sr + p3|xI=L (S−Sr)− p1|xI=0 Sr− p2|xI=0 (S−Sr) = miωvs (2.44)

where m is the mass of the characteristic area. By applying these boundary
conditions to equations (2.21), (2.26), (2.32) and (2.37), the unknown pressure
amplitudes A1, B1, B2, A3, B3 and A4 and the structural velocity vs can be
solved for a given incident pressure amplitude B4. Subsequently, the sound
transmission loss of the panel is determined as will be described in Section
2.4.2.
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Sandwich panel

The model of a characteristic area of a sandwich panel (see Figure 2.11) con-
sists of the same four sound fields as the model of a panel with tubes. To solve
the unknown pressure amplitudes and the structural velocity, a similar set of
boundary conditions can be formulated. The boundary conditions described
by equations (2.38) to (2.41) remain the same. The other boundary conditions
change into:

v3|xI=0 = vs (2.45)

v4|xI=0 = vs (2.46)

p4|xI=0 S − p1|xI=0 Sr − p3|xI=0 (S − Sr)+

+ p3|xI=L (S − Sr) − p2|xII=0 (S − Sr) = miωvs (2.47)

By applying these boundary conditions to equations (2.21), (2.26), (2.32) and
(2.37), the unknown pressure amplitudes A1, B1, B2, A3, B3 and A4 and
the structural velocity vs can be solved again for a given incident pressure
amplitude B4.
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Figure 2.11: Model of normal incidence sound transmission through a rigid characteristic
area - sandwich panel.

2.4 Parameter study

In this section, the models developed in Section 2.3 are used to explain the
working principle of the resonators and to examine the influence of different
parameters on the radiated and transmitted sound.
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2.4.1 Sound radiation

The working principle of the resonators is explained in more detail by exam-
ining the influence of the porosity on the sound radiated by the rigid char-
acteristic area. The porosity Ω = Sr/S of the panel is defined as the ratio
of the cross-sectional area of the resonators Sr and the characteristic area S.
Subsequently, the influence of viscothermal effects is presented.

Radiated sound power

A measure to quantify the reduction of radiated sound is the so-called in-
sertion loss. The insertion loss IL corresponds to the difference in radiated
sound power level between a panel without resonators LW0 and a panel with
resonators LWr:

IL = LW0 − LWr (2.48)

The sound power level is defined as:

LW = 10 log10

(
W̄

W̄ref

)
(2.49)

where W̄ref = 1 · 10−12 W is the reference power and the time-averaged sound
power W̄ is calculated by:

W̄ =
∫

S
Īn(r)dS (2.50)

with Īn(r) the time-averaged sound intensity at position r in the direction n
normal to the surface area S. In the case of harmonic time dependence, the
time-averaged sound intensity is defined as:

Īn(r) =
1
2

Re [p(r)v∗n(r)] (2.51)

where ∗ denotes the complex conjugate [22]. In this thesis, the terms sound
power and sound intensity will be used as abbreviations of time-averaged sound
power and time-averaged sound intensity.
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Influence of the porosity

Figure 2.12 shows the insertion loss for different values of the porosity7. No
viscothermal effects are included. It is seen that by tuning the dimensions of
the resonators, considerable reductions of the radiated sound power can be
obtained over a broad frequency range.
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Figure 2.12: Insertion loss for different porosities (L = 0.14 m).

Equation (2.40) shows that no sound is radiated by the characteristic area
if the volume velocities at the entrance of the resonators and at the vibrating
panel surface are equal in magnitude and opposite in phase, so:

∣∣∣v1|xI=L

∣∣∣ Sr = vs (S − Sr) ∠ v1|xI=L − ∠vs = ±π (2.52)

If the porosity is very small, this is achieved when the fluid velocity at the en-
trance of the resonator is very large compared to the velocity of the structure,
so:

Sr � S →
∣∣∣v1|xI=L

∣∣∣ � vs (2.53)

Figure 2.13(a) shows that this occurs near the frequencies f for which a quar-
ter, or odd multiples of a quarter, of the acoustic wavelength λ = c0/f equals
the length of the resonator, i.e. f ≈ (2j + 1)c0/4L with j = 0, 1, 2, . . . . At
these frequencies, the air inside the resonator is in resonance, which causes the
large fluid velocities at the entrance of the resonator. In Figure 2.14 it can be

7For all calculations in this thesis the following air conditions were used: c0 = 343 m/s,
ρ0 = 1.2 kg/m3, μ = 18.2 · 10−6 Ns/m2, γ = 1.4 and σ = 0.845.
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seen that, indeed, no sound is radiated at these frequencies. The magnitude of
the transfer function B2/vs is plotted here as a function of the frequency. The
pressure amplitude B2 of the radiated sound wave (see Figure 2.8), which is
linearly dependent on the excitation velocity vs, determines directly the sound
power radiated by a characteristic area. The volume velocities at the entrance
of the resonator and at the panel surface are shown in Figure 2.15.

vs Sr

∣∣v1|xI=L

∣∣ Sr

vs (S − Sr)

(a) Ω � 1 at f = c0/4L and f = 3c0/4L.

vs Sr

∣∣v1|xI=L

∣∣ Sr

vs (S − Sr)

(b) Ω = 0.5 at f = c0/2L.

Figure 2.13: Axial fluid velocity distribution (magnitude) over the length of the resonator
at the frequencies for which maximum sound reduction is obtained. The arrows indicate
the volume velocities.
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Figure 2.14: Radiated sound for different porosities (L = 0.14 m).
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Figure 2.15: Volume velocities at the entrance of the resonator v1|xI=L Sr (solid lines)
and at the panel surface vs (S −Sr) (dash-dotted lines) for different porosities (L = 0.14
m, S = 1 · 10−4 m2, vs = 1 m/s).

If the porosity is Ω = 0.5, equation (2.52) is satisfied when the magnitude
of the fluid velocity at the entrance of the resonator is equal to the magnitude
of the velocity of the structure, so:

Sr = S →
∣∣∣v1|xI=L

∣∣∣ = vs (2.54)

In Figure 2.13(b) it is seen that this occurs at frequencies for which a half,
or odd multiples of a half, of the acoustic wavelength corresponds with the
length of the resonator, i.e. f = (2j + 1)c0/2L with j = 0, 1, 2, . . . . This
is also seen in Figure 2.14. For a porosity of Ω = 0.5 large reductions in
radiated sound power are obtained in a relatively broad frequency range. If
the porosity approaches one, the results converge to the sound radiated by a
rigid characteristic area without a resonator.

In Figure 2.14 it is also seen that the amplitude of the radiated sound
pressure can only be zero if the porosity is Ω ≤ 0.5. The standard acoustic
solution for the fluid velocity at the entrance of the resonator is:

v1|xI=L = vs
1 + i(Ω − 1) sin(kL)
cos(kL) + iΩ sin(kL)

(2.55)

which means that
∣∣∣v1|xI=L

∣∣∣ ≥ vs. Hence, to satisfy the condition for zero
sound radiation as described by equation (2.52), the areas have to be such
that Sr ≤ S − Sr, or Ω ≤ 0.5.
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At the frequencies f = (2j + 1)c0/4L with j = 0, 1, 2, . . . , the radiated
sound power of a panel with resonators is equal to the radiated sound power of
a panel without resonators. In the frequency ranges jc0/L < f < (1/4+j)c0/L
and (3/4 + j)c0/L < f < (1 + j)c0/L with j = 0, 1, 2, . . . , more sound is
radiated than by a panel without resonators. However, the amplifications are
much smaller than the reductions that are obtained.

The insertion loss integrated over a frequency range of jc0/L < f < (j +
1)c0/L with j = 0, 1, 2, . . . is maximal for a porosity of Ω = 0.5. The integral
of the transfer function |B2/vs| over the same frequency range is minimal for
a porosity of Ω = 0.44.

Viscothermal effects

Figure 2.16 shows the influence of the viscothermal effects on the insertion loss.
The porosity is kept constant at Ω = 0.45, while the resonator radius is var-
ied. If the resonator radius decreases, the viscothermal effects increase, which
causes a decrease of both the amplifications and the reductions of the radiated
sound. The frequency range over which the noise is reduced broadens and it
is possible to obtain larger reductions at lower frequencies without lengthen-
ing the resonators. Since the shear wave number decreases with decreasing
frequency, more viscothermal effects are observed at lower frequencies. Fur-
thermore, it is seen that the locations of the maxima shift slightly to lower
frequencies. This is caused by the fact that due to viscous effects, the effective
speed of sound ceff = c0/Im(Γ) is lower than the undisturbed speed of sound
c0. Figure 2.17 shows that at the frequencies of maximum sound reduction,
the pressure amplitude B2 of the radiated sound wave no longer becomes zero.
Due to viscothermal effects, damping is introduced, which lowers the velocity
at the entrance of the resonators and decreases the heights of the peaks and
troughs in the insertion loss curve. For small resonator radii, the decrease of
the troughs even results in a complete disappearance of the amplifications. In
Figure 2.18, the volume velocities at the entrance of the resonator and at the
panel surface are shown with and without viscothermal effects.
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Figure 2.16: Insertion loss for different resonator radii (L = 0.14 m, Ω = 0.45).
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Figure 2.17: Radiated sound for different resonator radii (L = 0.14 m, Ω = 0.45).
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Figure 2.18: Volume velocities at the entrance of the resonator v1|xI=L Sr (solid lines)

and at the panel surface vs (S − Sr) (dash-dotted lines) (L = 0.14 m, R = 1 · 10−3 m,
Ω = 0.45, vs = 1 m/s).

Folded resonators

In the study described above, it was seen that the frequency range in which
the radiated sound is reduced is determined by the length of the resonators.
For sound reduction at low frequencies, relatively long resonators are neces-
sary. For some applications, this may be impractical because of limited space.
One of the possibilities to reduce the length of the resonators is by folding
them [35]. In this section, the performance of two types of folded resonators is
demonstrated. Schematic representations of the two configurations are shown
in Figure 2.19. The models for sound radiation, as well as the experimental
validation of one of these models, are presented in Appendix C. If no vis-
cothermal effects are taken into account, the mathematical models for both
resonator types are the same.

In Figure 2.20 the performance of the folded resonators is shown for differ-
ent ratios of the tube or layer lengths L1 and L2 (see Figures C.1 and C.2). In
all cases, the porosity and the total length of the resonators are kept the same
and no viscothermal effects are included. The different parts of the resonators
are indicated in Figure 2.19 by ① and ②. For both resonators, the cross-
sectional area of part ① is chosen to be equal to the cross-sectional area of
part ②. It can be seen that by folding the resonator, the insertion loss changes
considerably. This is mainly caused by the fact that the bend in the bent tube
resonator and the transition from tube to cylindrical layer in the tube-in-tube
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(a) Tube-in-tube resonator.

①

②

 

(b) Bent resonator.

①

②

Figure 2.19: Cross-sectional view of different types of folded resonators [35].

resonator behave as additional volume sources. Another difference is that the
ends of the folded resonators vibrate in the direction opposite to the end of
an unfolded resonator.
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Figure 2.20: Insertion loss of folded resonators for different ratios of the tube or layer
lengths (L1 + L2 = 0.14 m, Ω = 0.45).

Figure 2.21 shows the insertion loss of folded resonators for different porosi-
ties. The lengths and the cross-sectional areas of both parts are chosen to be
the same. The results are compared with unfolded resonators of the same total
length and the same porosity. It is seen that, for a large porosity, the perfor-
mance deteriorates a lot by folding the resonator. For small porosities, similar
reductions can be achieved as with unfolded resonators. Only the centre fre-
quency of the range in which reduction is obtained shifts from f = c0/2L to
f = c0/L. This means that folding the resonators such that L1 = L2 = L/2 is
useless, unless reductions are only desired in a small frequency range around
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f = c0/4L. To find a configuration that satisfies the required sound reduction
while minimising the thickness of the panel, the dimensions of the different
parts of the resonators can be tuned using optimisation [35]. Viscothermal
effects have similar influences on the radiated sound as in cases of unfolded
tube resonators.
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Figure 2.21: Insertion loss of folded (L = 0.14 m) and unfolded (L1 = L2 = 0.07 m)
resonators for different porosities.

2.4.2 Sound transmission

In this section, the influence of the porosity and the viscothermal effects on
the sound transmission through a panel with resonators is presented.

Sound transmission loss

The conventional measure for the amount of sound that is transmitted through
a panel is the sound transmission loss TL. The transmission coefficient τ is
defined as the ratio of the transmitted sound power and the incident sound
power. For the models of both configurations presented in Section 2.3.2, this
can be written as:

τ =
∣∣∣∣B2

B4

∣∣∣∣
2

(2.56)

The sound transmission loss is directly related to the transmission coefficient
by:

TL = 10 log10

(
1
τ

)
(2.57)
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In Chapter 1, it was seen that above the first structural eigenfrequency, the
sound transmission loss of an isotropic panel without resonators is described
by the so-called mass law. In this frequency range, the transmission of sound
is mainly controlled by the mass per unit area of the panel. Damping and
stiffness do not play a significant role then. For normal incidence, the mass
law is given by:

TL = 10 log10

[
1 +

(
m̄ω

2ρ0c0

)2
]

(2.58)

where m̄ is the mass per unit area of the panel. The transmission loss increases
with 6 dB per doubling of frequency and 6 dB per doubling of mass. In this
thesis, the mass law (i.e. the sound transmission loss of a panel with the
same mass, but without resonators) is used as a reference to evaluate the
performance of panels with resonators.

Influence of the porosity

Figure 2.22 shows the transmission loss of a characteristic area of a panel with
tubes and a sandwich panel for different porosities. No viscothermal effects
are included. As can be seen, large increases in sound transmission loss are
predicted over a broad frequency range, compared with the normal incidence
mass law. The increase in transmission loss of the sandwich panel is slightly
smaller than that of the panels with tubes. Internal resonances in the cavities
of the sandwich panel cause an extra peak and trough in the transmission
loss curve at frequencies for which a half, and odd multiples of a half, of the
acoustic wavelength is equal to the length of the resonator. The other peaks
in the transmission loss curves can be explained in a similar way as for sound
radiation. If the porosity is Ω = 0.5 and f = (2j+1)c0/2L with j = 0, 1, 2, . . . ,
the pressure forces at both sides of the panel are such that the nett load on
the panel is zero. This means that the panel is not vibrating and no sound
is transmitted. For the panels with tubes, the transmission loss curves of a
panel with a porosity of Ω and a panel with a porosity of 1− Ω are the same.
For the sandwich panels, these curves are different (see Figure 2.22(b)).

A system is called acoustic reciprocal if the acoustic response remains the
same when source and receiver are interchanged. In Appendix B it is shown
that, in the absence of viscothermal effects, the models of both a characteristic
area of a panel with tubes and of a sandwich panel are reciprocal. This
also means that, if the conditions at both sides of the panel are the same,
the orientation of the panel does not influence the amount of sound which is
transmitted through the panel, i.e. it does not matter whether the resonator
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openings are located at the incident side or at the receiving side.
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Figure 2.22: Transmission loss for different porosities (L = 0.14 m, m̄ = 2.5 kg/m2).

Viscothermal effects

Figures 2.23 and 2.24 show the influence of the viscothermal effects on the
sound transmission loss. The results are shown both for a characteristic area
of a panel with tubes and of a sandwich panel. The porosity is kept constant
at Ω = 0.45, while the resonator radius is varied. The trends that are seen are
similar to those observed for the radiation of sound in Section 2.3.1. The mass
of the panel determines the structural velocity of the panel. This means that
the mass also influences the amount of viscous effects that are introduced by
the vibration of the walls of the resonators. The amount of viscous effects in
turn influence the structural velocity of the panel again.

In Appendix B it is shown that if viscothermal effects are present, the
system is no longer reciprocal. This means that the acoustic response changes
when source and receiver are interchanged. This is also seen in Figures 2.23
and 2.24.

2.5 Experimental validation

The model for sound radiation as described in Section 2.3.1, as well as the
low reduced frequency solution for a vibrating cylindrical tube as presented in
Section 2.2.2, are validated by means of experiments in an impedance tube.
In this section, the experiments and their results are discussed.
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(a) Resonator openings at receiving side.

c0/2L c0/L 3c0/2L

0

20

40

60

80

100

5⋅102 103 2⋅103 5⋅103

Frequency [Hz]

T
ra

ns
m

is
si

on
lo

ss
[d

B
]

(b) Resonator openings at incident side.

c0/2L c0/L 3c0/2L

Figure 2.23: Transmission loss for different resonator radii - panel with tubes (L = 0.14
m, Ω = 0.45, m̄ = 2.5 kg/m2).
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(a) Resonator openings at receiving side.

c0/2L c0/L 3c0/2L

0

20

40

60

80

100

5⋅102 103 2⋅103 5⋅103

Frequency [Hz]

T
ra

ns
m

is
si

on
lo

ss
[d

B
]

(b) Resonator openings at incident side.
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Figure 2.24: Transmission loss for different resonator radii - sandwich panel (L = 0.14
m, Ω = 0.45, m̄ = 2.5 kg/m2).

Experimental setup and procedure

A schematic representation of the experimental setup is shown in Figure 2.25
[30, 51]. A sample with resonator was harmonically excited in an impedance
tube by a shaker. The shaker was driven by a random signal, so that a
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broadband sound field was generated. The sound pressures p I and p II were
measured at two positions in the impedance tube and the excitation velocity
vs was derived from the signal of an accelerometer which was attached to the
sample. To make a comparison with the model, the transfer function p I/vs

was determined. The end of the impedance tube was equipped with a baffle to
give it a well-defined end condition. The dimensions of the experimental setup
are listed in Table 2.1. Additional information on the measurement equipment
is shown in Table 2.2.

Accelerometer

Sample

Pressure transducers

Impedance tube

Baffle

Shaker
xI

xII

Rimp

LII

LI

pI pII

Limp

B2

A2

Figure 2.25: Experimental setup for measurement of sound radiation.

Dimensions

Rimp 0.025
L I 0.495
L II 0.450

Table 2.1: Dimensions of the experimental setup [m].

Model of the experimental setup

The difference between the experimental setup and the model described in
Section 2.3.1 is that the impedance tube is not infinitely long. Therefore, sound
is reflected at the end of the impedance tube. The pressure amplitude A2 of
the reflected sound waves is calculated by imposing an impedance condition
at the end of the impedance tube. This boundary condition can be written
as:

p2|xII=Limp

v2|xII=Limp

= Z (2.59)
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Description Type Remarks

Pressure transducers (2×) Kulite XCS-190M-0.14 bar D
Accelerometer Brüel & Kjær (B&K) 4374
Shaker B&K 4809
Pre-amplifier Kulite D486 For pressure

transducers
Charge amplifier B&K 2626 For accelerometer
Power amplifier B&K 2706 For shaker
Siglab Model 20-42 Data acquisition and

generation of
excitation signal

Personal computer

Table 2.2: Measurement equipment for sound radiation measurements.

where Limp is the distance from the front of the sample to the end of the
impedance tube. The impedance Z at the end of the impedance tube was
determined from the transfer function H21 = p II/p I of the pressures measured
by the two pressure transducers [11, 12]. Using equations (2.21) and (2.26)
with vs = 0, the relation between the impedance and the measured transfer
function is found to be:

Z = −ρ0c0
Γ2n2

iγ
H21 sinh(Γ2kLI) − sinh(Γ2kLII)
H21 cosh(Γ2kLI) − cosh(Γ2kLII)

(2.60)

where L I and L II are the distances of the two pressure transducers to the end
of the impedance tube. Though the influence is only small, the viscothermal
effects in the impedance tube are also taken into account. By combining equa-
tion (2.59) with the other boundary conditions (2.38) to (2.40), the unknown
pressure amplitudes A1, B1, A2 and B2 can be solved as a function of the
excitation velocity vs and the transfer function pI/vs can be calculated at the
position of the first pressure transducer.

Due to inlet effects, the effective length of the resonator L = Lphy + δ is
slightly larger than the physical length Lphy of the resonator (see also Section
3.2). For a tube centrally located in another tube, the end correction δ is given
by [8]:

δ =
8R

3π

[
1 − 1.25

R

Rimp

]
, with

R

Rimp
< 0.6 (2.61)
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Samples

Figures 2.26(a), 2.26(b) and 2.26(c) show the three samples with resonators
that were tested: two rigid aluminium samples and one sample with an alu-
minium tube that was used for the resonator panel as presented in Chapter
5. The dimensions of the resonators, as well as the distances from the fronts
of the samples to the end of the impedance tube, are listed in Table 2.3. The
radius of sample 1 is chosen to be small enough to perceive the viscothermal
effects and large enough to distinguish the influence of the resonator. The
radius of sample 2 is such that a large reduction of the radiated sound power
is obtained over a broad frequency range. For radiation to the far field, a
reduction in sound power level of at least 15 dB is predicted in the frequency
range of 1035-2045 Hz.

(a) Sample 1. (b) Sample 2.

(c) Sample 3. (d) Reference case (model).

Figure 2.26: Photos of the samples for experimental validation and a schematic repre-
sentation of the reference case.

Results

Figure 2.27 shows the results of the measurements on sample 1, compared with
the analytical results. It can be seen that there is an excellent agreement be-
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Lphy [m] R [m] Ω [-] Limp [m]

Sample 1 0.0615 0.0060 0.06 0.663
Sample 2 0.1112 0.0161 0.41 0.640
Sample 3 0.1090 0.0122 0.24 0.650

Table 2.3: Dimensions of the samples and experimental setup for validation.

tween model and measurement. To show the reduction in radiated sound, the
calculated transfer function of a rigid piston (i.e. a characteristic area without
resonator - see Figure 2.26(d)) is plotted as a reference. If the magnitude of
the transfer function of the sample is lower than the transfer function of the
piston, the radiated sound is reduced. The peaks in the transfer functions are
caused by resonances in the impedance tube.
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Figure 2.27: Magnitude and phase of calculated and measured transfer functions pI/vs

for sample 1.

The results of the measurements on sample 2 are shown in Figure 2.28.
It can be seen that there is a fairly good agreement between model and mea-
surement. The discrepancies that are observed are mainly caused by the fact
that the sound pressures are so small here that they approximate the noise
floor of the pressure transducers. This makes the measurements less accurate.
Furthermore, it should be noted that Bolt [8] proved that the end correction
defined by equation (2.61) is valid for R/Rimp < 0.6. However, for sample 2
the ratio of the resonator radius and the radius of the impedance tube equals
0.64. The reason that the transfer function of the reference differs from the
transfer function of the reference in Figure 2.27 is that the distance Limp from
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the front of the sample to the end of the impedance tube was different for the
two experiments (see Table 2.3).
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Figure 2.28: Magnitude and phase of calculated and measured transfer functions pI/vs

for sample 2.

Figure 2.29 shows the results of the measurements on sample 3, compared
with the analytical results. Excellent agreement is obtained up to 2000 Hz.
Possible deformations of the thin wall or end of the resonator can explain the
discrepancies above 2000 Hz. Further discussions on this can be found in the
next chapters.
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Figure 2.29: Magnitude and phase of calculated and measured transfer functions pI/vs

for sample 3.
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2.6 Concluding remarks

In this chapter, one-dimensional analytical models were presented to study
the radiation of sound by and the transmission of sound through panels with
tube resonators. To describe the viscothermal wave propagation inside and
around the resonators, the low reduced frequency model was used. Solutions
were derived for axially vibrating cylindrical tubes and layers.

Simulations showed that, by the application of tube resonators, the radi-
ated or transmitted sound can be reduced considerably over a broad frequency
range. The length of the resonators determines the centre frequency of the
range in which the sound is reduced and the porosity determines the shape of
the spectrum. Furthermore, it was seen that viscothermal effects increase the
reductions at lower frequencies, decrease the amplifications, but also decrease
the reductions around the centre frequency. To validate the models for sound
radiation, experiments were performed in an impedance tube. Generally, good
agreement was obtained between model and measurements.

As mentioned in Chapter 1, tube resonators are well known for their sound
absorption applications. In this chapter it was demonstrated that the working
principle of the resonators for the reduction of radiated or transmitted sound
is quite different. If no viscothermal effects are present, sound absorption
only occurs at those frequencies at which the air inside the resonators is in
resonance. These frequencies are the frequencies for which a quarter, and odd
multiples of a quarter, of the acoustic wavelength is equal to the length of the
resonator. In the case of sound radiation or sound transmission, the centre
frequency of the frequency range in which the sound is reduced is the frequency
for which a half, and odd multiples of a half, of the acoustic wavelength is equal
to the length of the resonator. The frequencies for which sound reduction is
maximal are not only related to the length of the resonators, but also depend
on the porosity of the panel.



Chapter 3

Two-dimensional modelling

3.1 Introduction

In the previous chapter, one-dimensional analytical models were presented
to study the transmission of normal incident sound through panels with res-
onators. The panels were assumed to be rigid and infinitely large. However, in
practice, sound is incident from many different directions, the panel is flexible,
and its dimensions are finite. Furthermore, the discontinuity of the surface of
the structure, introduced by the presence of resonators, may cause scatter-
ing of the incident and transmitted sound fields. In this chapter, two two-
dimensional models are presented, which are used to investigate the influence
of the aforementioned aspects.

In Section 3.2, the influence of scattering by the resonator openings on
sound radiation and normal incidence sound transmission is considered. The
sound fields at both sides of the panel are described by a two-dimensional
analytical model. As in Chapter 2, the panel is again assumed to be rigid
and infinitely large. Because of the periodicity of the structure, the scattered
sound fields can be expressed as a series of spatial Fourier harmonics.

In Section 3.3, the transmission of sound through a panel with resonators
is modelled using the finite element method (FEM). A two-dimensional model
of a panel mounted between two rooms is considered. The difference with the
previously presented models is that the sound is random incident and the panel
is bounded and flexible now. The effects of these conditions are demonstrated
by means of a parameter study.

The models presented in this chapter only consider the tube panel con-
figuration (see Figure 2.1). Moreover, no viscothermal effects are taken into
account.



46

3.2 Two-dimensional semi-analytical model

Figure 3.1 shows the transmission of a normal incident plane sound wave
through a rigid panel with resonators. When the sound wave impinges on the
panel, the sound is scattered by the resonators in the structure. Depending on
the ratio of the width b of the characteristic areas and the acoustic wavelength
λ, these waves are either plane waves radiating into the far field or evanescent
surface waves. The sound wave which is reflected in the direction opposite to
that of the incident wave is the so-called specular reflection.

1 2

Incident sound wave

Specular reflection

Transmitted wave front

C1

(Dn)1

(Dn)2

a
b

λ

xI

zI xII

zII

vs

Figure 3.1: Transmission of a normal incident plane wave through an infinitely large,
rigid panel with resonators.

Since the structure is periodic, and assumed here to be infinitely large, the
sound fields at both sides of the panel can be expressed as a series of spa-
tial Fourier harmonics. Mechel [36] used the same formulation to investigate
the performance of periodic absorbers. Besides the absorption characteristics
of different periodic structures, he also considered the transmission of sound
through perforated plates into porous absorption material. The difference be-
tween the model presented in this section and the cases investigated by Mechel
is that in the present work the rigid structure is vibrating. This means that
there is an interaction between the velocity of the structure and the fluid
velocities in the sound fields.

The model presented by Mechel was also used to demonstrate the influence
of the angle of incidence of an obliquely incident plane wave on the absorption
characteristics of a structure. However, when considering sound transmission
through a rigid panel, obliquely incident plane waves are not transmitted. An
explanation for this can be found in Figure 3.2. Sound impinging on a flexible
panel, introduces bending waves in that panel, which make the panel radiate
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sound to the other side. In the case of a rigid panel, no deformations are
induced, so sound can only be transmitted by the movement of the panel as
a whole. In the case of normal incidence, this happens because the excita-
tion pressure is the same at any position on the surface. However, when the
angle of incidence is oblique, the excitation pressure varies spatially over the
panel surface and the integral of the pressure load is zero (see Figure 3.2).
This means that in this situation the panel does not move and no sound is
transmitted. The model that is presented here therefore only describes the
transmission of normal incident plane waves.

+

_

_

_

+

+Incident wave front

λtr =
λ

sin(θ)

λ θ

Figure 3.2: Obliquely incident sound field on an infinitely large, rigid panel without
resonators.

In Section 3.2.1, the formulation of the two-dimensional sound fields at
both sides of the panel is presented. Expressions are derived for the pressure
and the fluid velocity in the direction normal to the panel. Subsequently, the
model for sound transmission is composed by coupling the two two-dimensional
sound fields to the sound fields inside and around1 the resonators. The latter
sound fields are described by the one-dimensional analytical models as pre-
sented in Chapter 2. The model for sound radiation is then derived from the
model for sound transmission. Finally, the influence of scattering by the res-
onator openings on sound radiation and sound transmission is demonstrated.

1In this section, the air volumes with the opening at the receiving side are referred to
as air inside the resonators and the air volumes with the opening at the incident side are
referred to as air around the resonators.
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3.2.1 Two-dimensional sound fields

For the two sound fields at both sides of the panel (see Figure 3.1), a similar
two-dimensional formulation can be used. The incident sound field is com-
posed of a normal incident plane sound wave and its reflection on the surface.
The formulation of the radiated sound field at the receiving side is similar to
that of the reflected part at the incident side. The general expressions for
the pressure and the fluid velocity are defined in the x, z-plane. Later on,
subscript i will be used for the incident side and subscript ii for the receiving
side (see Figure 3.1).

Assuming harmonic time dependence, the two-dimensional pressure field
can be written as [36]:

p(x, z) = Ce−ikx +
∞∑

n=−∞
Dneγnxe−iβnz (3.1)

The first term represents an incident sound wave with amplitude C and the
second term is the general formulation of a scattered sound field with ampli-
tudes Dn. The latter components are the so-called spatial harmonics, where
the component n = 0 is the specular reflection. The coefficients βn and γn

are related by the fact that the pressure has to satisfy the wave equation.
For a two-dimensional sound field and harmonic time dependence, the wave
equation is given by:

∂2p

∂x2
+

∂2p

∂z2
+ k2p = 0 (3.2)

For the pressure field as defined by equation (3.1), this equation is only satisfied
if:

γ2
n = β2

n − k2 (3.3)

Since the structure is periodic in z with period b, the pressure at the surface
must be periodic in the same way. This is satisfied if:

βn = n2π/b with n = 0,±1,±2, . . . (3.4)

where b is the width of the characteristic area. With equation (3.3), the
expression for γn becomes:

γn = k
√

(nλ/b)2 − 1 with n = 0,±1,±2, . . . (3.5)

where λ = c0/f is the free-field wavelength. The pressure field can now be
written as:

p(x, z) =

{
Ce−ikx +

∞∑
n=−∞

Dnekx
√

(nλ/b)2−1e−in2πz/b

}
(3.6)



Two-dimensional modelling 49

At the incident side, the pressure amplitude C is prescribed. At the receiving
side, no incident sound wave is assumed to be present, so C = 0. The pressure
amplitudes Dn at both sides of the panel are determined by the boundary
conditions at the surface (xI = 0, xII = 0). Depending on whether the radicand
in the exponent of the sum terms is positive or negative, the corresponding
harmonics are either evanescent surface waves or plane waves which radiate
into the far field. Only the latter components contribute to the radiated sound
power. The radicand in the exponent of the sum terms is negative, and thus
the spatial harmonics are radiating if:

− b

λ
≤ n ≤ b

λ
(3.7)

For the acoustic wavelengths and the widths of the characteristic areas that are
considered in this thesis, i.e. b/λ < 1, this implies that only the component
n = 0 contributes to the radiated sound power. In fact, this would mean
that other components could be omitted. However, to satisfy the boundary
conditions described in the next section and to obtain an accurate solution for
the pressure amplitude D0, a certain number of components n �= 0 still has to
be taken into account.

To determine the sound power through a surface parallel to the panel, the
fluid velocity v in x-direction also has to be known. This fluid velocity is
related to the pressure by Euler’s equation of motion, which is given by:

−ρ0
∂ṽ(x, z)

∂t
=

∂p̃(x, z)
∂x

(3.8)

Harmonic expansion yields:

v(x, z) =
i

ρ0ω

∂p(x, z)
∂x

(3.9)

With equation (3.6), the fluid velocity in x-direction can then be written as:

v(x, z) =
1

ρ0c0

[
Ce−ikx + i

∞∑
n=−∞

Dn

√
(nλ/b)2 − 1ekx

√
(nλ/b)2−1e−in2πz/b

]

(3.10)

3.2.2 Sound radiation and transmission

Sound transmission

In accordance with the one-dimensional model presented in Section 2.3.2, the
model for sound transmission consists of four parts. A schematic overview
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of this is shown in Figure 3.3. The sound fields at the incident side and the
receiving side of the panel are described by the two-dimensional analytical
models as presented in the previous section. The pressures p1 and p2 and the
fluid velocities v1 and v2 at these sides are given by equations (3.6) and (3.10),
respectively. The sound fields inside and around the resonators are described
by the one-dimensional analytical models as presented in Section 2.2. If no
viscothermal effects are taken into account, the pressures p3 and p4 and fluid
velocities v3 and v4 in these two parts can be written as:

pj(x) = Aje
ikx + Bje

−ikx j = 3, 4 (3.11)

vj(x) = − 1
ρ0c0

(
Aje

ikx − Bje
−ikx

)
j = 3, 4 (3.12)

The sound fields ① and ③ at the incident side are defined with respect to
coordinates xI and zI and the sound fields ② and ④ at the receiving side are
defined with respect to coordinates xII and zII (see Figure 3.3). The unknown
pressure amplitudes (Dn)1, A3, B3, (Dn)2, A4 and B4 and the structural
velocity vs are determined by the boundary conditions of the system and the
equation of motion. These boundary conditions describe both the coupling
between the different sound fields and the coupling between the sound fields
and the structure.

1

3

2

4

B4

A4

A3

B3

a

b

C1

(Dn)1

(Dn)2

L

Incident side Receiving side

xI

zI

xII

zII

vs

Figure 3.3: Transmission of a normal incident plane wave through an infinitely large,
rigid panel with resonators.

Boundary conditions

At the incident side of the panel three boundary conditions have to be satisfied.
The first boundary condition states that the fluid velocity in xI-direction is
continuous at the surface xI = 0. This implies that at the end of the resonator
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the fluid velocity v1 is equal to the structural velocity vs and in the opening
around the resonator the fluid velocity v1 is equal to the fluid velocity v3.
Because the set of equations does not have a closed-form solution, it is written
in a weak form by multiplying the velocities by weighting functions w(zI) and
integrating over zI:∫ b

0
w(zI) v1(zI)|xI=0 dzI = vs

∫ a

0
w(zI) dzI + v3|xI=0

∫ b

a
w(zI) dzI (3.13)

where a is the resonator diameter. Since no viscothermal effects are taken
into account, the velocity profiles inside and around the resonators are flat, so
the fluid velocities v3 and v4 are independent of zI and zII, respectively. The
weighting functions are chosen to be:

w(z) = eiq2πz/b with q = 0,±1,±2, . . . (3.14)

The second boundary condition states that the pressure in the opening around
the resonator is continuous. This pressure condition is written as:∫ b

a
p1(zI)|xI=0 dzI = p3|xI=0 [b − a] (3.15)

Since the pressures p3 and p4 inside and around the resonators are independent
of zI and zII, this means that the condition is only satisfied in an average sense.
The third boundary condition requires that the fluid velocity v3 at the panel
surface is equal to the structural velocity:

v3|xI=L = vs (3.16)

At the receiving side similar boundary conditions have to be satisfied, which
can be written as:∫ b

0
w(zII) v2(zII)|xII=0 dzII = − vs

∫ b−a

0
w(zII) dzII + v4|xII=0

∫ b

b−a
w(zII) dzII

(3.17)∫ b

b−a
p2(zII)|xII=0 dzII = p4|xII=0 a (3.18)

v4|xII=L = − vs (3.19)

Furthermore, the equation of motion of the entire system is given by:∫ a

0
p1(zI)|xI=0 dzI+p3|xI=L [b−a]−p4|xII=L a−

∫ b−a

0
p2(zII)|xII=0 dzII = miωvs

(3.20)
By applying these boundary conditions to equations (3.6), (3.10), (3.11) and
(3.12), the unknown pressure amplitudes and the structural velocity can be
solved for a given amplitude C1 of the incident sound wave.
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Sound transmission loss

As mentioned in Section 2.4.2, the transmission coefficient is defined as the
ratio of the transmitted sound power W̄t and the incident sound power W̄i:

τ =
W̄t

W̄i
(3.21)

Both sound powers are calculated with equations (2.50) and (2.51), where the
sound intensities at xI = 0 and xII = 0, respectively, are integrated over the
width of one characteristic area. For the incident sound power this yields:

W̄i =
b|C1|2
2ρc0

(3.22)

With the expression for the transmission coefficient, the sound transmission
loss is calculated with equation (2.57).

Sound radiation

In the case of sound radiation, only the receiving side of the panel is consid-
ered (see Figure 3.3). The rigid panel is assumed to vibrate harmonically in
normal direction with a given normal structural velocity vs and the radiated
sound field can be determined by solving the unknown pressure amplitudes
(Dn)2, A4 and B4 from the system of equations formed by boundary condi-
tions (3.17) to (3.19). The radiated sound power is calculated with equations
(2.50) and (2.51), integrating the sound intensity at xII = 0 over the width of
one characteristic area. Finally, the insertion loss is calculated with equation
(2.48).

3.2.3 Parameter study

This section demonstrates the influence of scattering by the resonator openings
on the sound radiation by and sound transmission through an infinitely large,
rigid panel with resonators.

Sound radiation

Figure 3.4(a) shows the insertion loss of various configurations with the same
porosity2 but different values of the resonator diameters a and widths b of
the characteristic areas. For accurate solutions, the system was truncated at

2The porosity is defined here as Ω = a/b (see Figure 3.3).
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n = ±20. Comparison with the results obtained with the one-dimensional an-
alytical model (without viscothermal effects) as presented in Chapter 2 shows
that when the dimensions of the resonators and characteristic areas increase,
the effects of scattering also increase. Consequently, the peaks of the insertion
loss curves shift to lower frequencies. An explanation for this can be found in
the fact that scattering by the resonator openings causes inlet effects, which
make the effective length of the resonators a little longer than the physical
length. These inlet effects are clearly visible in Figure 3.5, where the pressure
and the sound intensity of the radiated sound field are plotted at an arbitrary
frequency. In accordance with the observations in Section 2.5, the effective
length changes for different values of the resonator diameters and widths of
the characteristic areas.

In Figure 3.5(b) it can be seen that the sound intensity at the panel surface
is in the direction away from the surface3. The sound intensity at the resonator
opening is in the opposite direction, into the resonator. Since these sources
partly cancel each other out, the sound intensity at a small distance from the
panel is lower than at the panel surface, which means that the radiated sound
is reduced.

Analytical b = 0.015 m b = 0.030 m b = 0.050 m

500 1000 1500 2000 2500 3000

0

10

20

30

40

50

Frequency [Hz]

In
se

rt
io

n
lo

ss
[d

B
]

(a) Sound radiation.
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(b) Sound transmission.
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Figure 3.4: Insertion loss and normal incidence transmission loss for different resonator
radii and widths of the characteristic areas (L = 0.1 m, Ω = 0.3, m̄ = 2.5 kg/m).

3Note that the positive directions of xII and thus Ī2 are into the resonator.
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Figure 3.5: Magnitude of pressure p2 and sound intensity Ī2 in normal direction over one
characteristic area at 2000 Hz (L = 0.1 m, b = 0.03 m, Ω = 0.3, vs = 1 m/s).

Normal incidence sound transmission

Figure 3.4(b) shows the normal incidence transmission loss of various panels
with the same porosity but different values of the resonator diameters a and
widths b of the characteristic areas. For accurate solutions, the system was
truncated at n = ±20. The conclusions that can be drawn by comparison
with the one-dimensional analytical model are the same as in the case of
sound radiation discussed above.

3.3 Finite element model

Another way of modelling the transmission of sound through a panel with
resonators is by using the finite element method (FEM). With this method, the
transmission of non-normal incident sound can also be considered. Moreover,
the flexibility and boundedness of the panel can be taken into account.

In this section, a two-dimensional FEM model is used to study the trans-
mission of sound through a panel with resonators mounted between two rooms.
A schematic representation of the setup is shown in Figure 3.6. In one room,
a sound source is located at an arbitrary position and in the other room, the
transmitted sound power is calculated. The first room has three acoustically
hard walls, whereas in the other room one or more walls are fully sound ab-
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sorbing and the remaining walls are acoustically hard. The panel is simply
supported.

The degrees of freedom (DOF) of an acoustic FEM model are the total
pressures at the nodes. Because of this, it is not straightforward to make a
distinction between incident sound waves and reflected sound waves. This also
means that, using this method, it is not straightforward to model obliquely
incident plane sound waves at specific angles of incidence. In this work, there-
fore, only random incident sound transmission is considered.

Sound source (xs, zs)

tp, Ep
tw, Ew

te, Ee

tb, Eb

a b

L

Sound absorbing wall

Lx1

Lz

Lx2

x

z

Incident side Receiving side

Detail

Figure 3.6: Simply supported panel with resonators between two rooms.

3.3.1 Sound transmission

The setup as shown in Figure 3.6 was modelled using the commercial FEM
program Ansys. The panel with resonators consists of 20 characteristic areas,
with dimensions and material properties as listed in Table 3.1. tp, tw and
te are the thicknesses of the plate and the walls and ends of the resonators,
respectively. The entire structure was meshed with two-node beam elements
(BEAM3). In reality, the tube resonators are cylindrical, so the stiffness of
the walls and ends of the resonators is much higher than those of the beam
elements if the actual Young’s modulus were to be applied. In the FEM model,
the additional stiffness of these parts was therefore simulated using a Young’s
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modulus of Ew = Ee = 1000E. To increase the stiffness of the plate, additional
stiffness was also introduced at the entrance of the resonators. Extra beam
elements of thickness tb and Young’s modulus Eb = E were applied across
the resonator openings (see Figure 3.6). For the plate, a Young’s modulus of
Ep = E was used. In the parameter study in the next section, the value of E
is varied.

Characteristic area

b 0.03 m
a 0.012 m
L 0.11 m
tp 0.002 m
tw 0.0003 m
te 0.0006 m
tb 0.002 m

Material

ρ 2710 kg/m3

ν 0.3 -

Table 3.1: Dimensions and material properties of the panel.

The air at both sides of the panel was meshed with linear four-node fluid
elements (FLUID29). A part of the FEM mesh around the structure is shown
in Figure 3.7. At the interface, the structural mesh and the mesh of the air were
coincident and full coupling was present. Only the additional beam elements
across the resonator openings were not coupled to the air. The dimensions of
the rooms and the position of the sound source are listed in Table 3.2. Both
rooms were modelled with 100 fluid elements in the x-direction. The sound
source in the room at the left-hand side of the panel was defined by prescribing
a volume flow at one node. The sound absorbing wall(s) in the receiving room
was/were modelled by prescribing a dimensionless impedance of one.

Fluid element (FLUID29) Beam element (BEAM3)

Figure 3.7: FEM mesh of part of the structure with the surrounding air.

Sound transmission loss

To determine the sound transmission loss, the incident sound power has to be
known. However, as mentioned before, in a FEM model it is not straightfor-
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Room dimensions

Lx1 1.2+L m
Lx2 1.2 m
Lz 0.6 m

Source position

xs -1.0-L m
zs 3b m

Table 3.2: Dimensions of the two rooms and source positions and strengths.

ward to make a distinction between incident sound waves and reflected sound
waves. Usually, in the case of plane wave excitation and a fully reflective sur-
face, the incident part of the pressure on the panel can be approximated by
half the total pressure [20]. However, in the case of a panel with resonators, the
reflection coefficient is not equal to one. In this work, therefore, an alternative
approach is used.

The estimation is based on the assumption of a one-dimensional sound
field between two closely spaced points. As a first step, the pressures pI and
pII are determined at two closely spaced nodes, located at x = xI and x = xII,
one element size apart (see Figure 3.8). Between these points, the pressures
are assumed to be dependent on x in the following way:

p(x) = Aeikx + Be−ikx (3.23)

The pressure amplitudes A and B can thus be written as a function of the
pressures pI and pII and the x-coordinates of the two nodes:

A =
i
(
pIIe

−ikxI − pIe
−ikxII

)
2 sin [k(xI − xII)]

B =
i
(
pIe

ikxII − pIIe
ikxI

)
2 sin [k(xI − xII)]

(3.24)

With the expression for B, the incident pressure and fluid velocity normal to
the panel surface at point x = (xI + xII)/2, respectively, are then obtained by:

pi(x) = Be−ikx (3.25)

vi(x) =
1

ρ0c0
Be−ikx (3.26)

Subsequently, the incident sound intensity at this point is determined by equa-
tion (2.51). At the other side of the panel, the sound intensities are calculated
using the pressures and fluid velocities resulting directly from the FEM anal-
ysis. The sound powers at both sides are obtained by integrating the sound
intensities from 0 to Lz over z using the trapezoidal rule, in accordance with
equation (2.50). Finally, the sound transmission loss is determined by equa-
tions (3.21) and (2.57).
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Figure 3.8: One-dimensional approach for determining the incident part of the sound
power through the surface indicated by the dashed line.

3.3.2 Parameter study

In this section, the influence of different parameters on the sound transmission
loss is presented. First, the influence of the flexibility of the plate and the
resonators is studied. Second, the influence of two environmental parameters
is considered: the position of the sound source and the number of sound
absorbing walls in the receiving room. The basic parameters that were used
in the model are listed in Tables 3.1 and 3.2.

Flexibility of the panel

The influence of the flexibility of the panel is examined by alternately changing
the Young’s modulus of the plate, the resonator walls and the resonator end.
Two different values for the Young’s modulus were applied: E = 70·109 N/m2,
which is referred to as flexible, and E = 70 · 1012 N/m2, which is referred to
as stiff.

Figure 3.9(a) shows the sound transmission loss of an entirely stiff panel
with resonators. Apart from the additional peaks and troughs, the trans-
mission loss curve reasonably resembles the results predicted by the one-
dimensional analytical model presented in Chapter 2. Most of the peaks and
troughs are caused by acoustic resonances in the room at the incident side,
which start occurring from 135 Hz. The shapes of the acoustic modes that
cause the first two peaks in the sound transmission loss curve are shown in
Figure 3.10. It is also seen that the structural eigenfrequencies of the panel, in-
dicated by the rectangular boxes in Figure 3.9(a), have a negative effect on the
sound transmission loss. The modes shapes associated with these frequencies
are shown in Figure 3.11. For this panel, the structural resonances that occur
in the frequency range of interest are only concerned with deformations of
the plate; the resonators remain undeformed here. In Figure 3.9(a) the sound
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transmission loss of a panel without resonators is also shown. This panel has
the same mass, Young’s modulus and Poisson’s ratio, and was modelled in the
same setup.

AnalyticalMass law FEM without resonators FEM with resonators
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(a) Stiff panel.
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(b) Flexible panel.
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Figure 3.9: Sound transmission loss of stiff and flexible panels, with and without res-
onators.

577 Hz 610 Hz

Figure 3.10: Acoustic mode shapes at the incident side of stiff panel with resonators at
577 Hz and 610 Hz.

In Figure 3.9(b), the sound transmission loss of an entirely flexible panel
with and without resonators is shown. It can be seen that for the panel with
resonators, the flexibility of the structure has a very large negative effect on the
sound transmission loss. In Figure 3.12 the sound transmission loss of panels
with resonators with different stiff and flexible parts is shown. From this, it
can be concluded that the inferior performance of the entirely flexible panel is
mainly caused by the deformations of the resonator walls. The first (coupled)
structural eigenfrequency of the entirely flexible panel with resonators is 21 Hz.
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Mode 1

286 Hz
(282 Hz)
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1037 Hz
(1128 Hz)

Mode 3

2047 Hz
(2538 Hz)

Figure 3.11: First three structural mode shapes (uncoupled) of the stiff panel with
resonators. The corresponding eigenfrequencies of the stiff panel without resonators are
shown in brackets.
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Figure 3.12: Sound transmission loss of panels with resonators with different stiff and
flexible parts.

This means that, in the frequency range of interest, the modal density is rather
high. The modes in this range are not only concerned with deformations of the
plate, but also with the resonators, which now deform. This can clearly be seen
in Figure 3.13, where the deformation shapes are shown which are associated
with some maxima and minima in the sound transmission loss curve. The
local peaks and troughs in the curves are, again, also partly caused by acoustic
resonances in the room at the incident side. The acoustic eigenfrequencies of
577 Hz and 610 Hz are, for example, observed in all figures. In Figure 3.14 two
other acoustic modes are shown, occurring at the large peak in Figure 3.9(b).
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710 Hz 1334 Hz 1965 Hz

Figure 3.13: Structural deformation shapes (coupled) of the flexible panel with res-
onators.

1299 Hz 1334 Hz

Figure 3.14: Acoustic mode shapes at the incident side of the flexible panel with res-
onators at 1299 Hz and 1334 Hz.

It should be noted that in the present model, the pressure of the air between
the resonators is larger than in reality. This is caused by the fact that in a two-
dimensional model, the air remains captured between the resonators, whereas
in practice it can flow more freely around the resonators. The deformations
of the walls of the resonators are therefore also larger here, having a more
negative effect on the sound transmission loss.

Position of sound source

In Figure 3.15(a) the sound transmission loss is shown for four different po-
sitions of the sound source. The coordinates of the respective positions are
listed in Table 3.3. Since the panel was excited in different ways, small differ-
ences in sound transmission loss are observed. However, the general trends of
the curves are the same.

Sound absorbing walls in the receiving room

Figure 3.15(b) shows the sound transmission loss for different numbers of sound
absorbing walls in the receiving room. In one case, only the back wall is sound



62

0

20

40

60

80

5⋅102 103 2⋅103 3⋅103

Frequency [Hz]

T
ra

ns
m

is
si

on
lo

ss
[d

B
]

Position 1
Position 2
Position 3
Position 4

(a) Positions of the sound source.
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(b) Number of sound absorbing walls.
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Figure 3.15: Sound transmission loss for different positions of the sound source and
different numbers of sound absorbing walls in the receiving room.

Position xs [m] zs [m]

1 −1.0 − L 3b
2 −1.0 − L 14b
3 −0.5 − L 3b
4 −0.5 − L 14b

Table 3.3: Different positions of the source.

absorbing and the other two walls are acoustically hard. In the other case, all
three wall are fully sound absorbing. A panel with resonators with a Young’s
modulus of E = 70 · 1012 N/m2 was considered. No considerable differences
are observed between the two curves.

3.4 Concluding remarks

In this chapter, two two-dimensional models were presented. The first, a
semi-analytical model of an infinitely large, rigid panel with resonators, was
used to study the influence of scattering by the resonator openings. Both
sound radiation and normal incidence sound transmission were considered. It
was seen that scattering by the resonator openings causes inlet effects, which
make the effective length of the resonators slightly longer than the physical
length. These effects hardly influence the insertion loss and the transmission
loss. Only the maxima in the curves occur at slightly lower frequencies than



Two-dimensional modelling 63

predicted by the one-dimensional analytical models presented in Chapter 2.
The second model was a two-dimensional FEM model of a panel with

resonators, mounted between two rooms. With this model, the influence of
different parameters on random incident sound transmission was examined for
a specific configuration. It appeared that for a stiff panel, the sound trans-
mission loss curve was similar to the sound transmission loss curve that was
obtained with the one-dimensional analytical model presented in Chapter 2.
Nevertheless, additional peaks and troughs appeared due to structural reso-
nances of the panel and acoustic resonances in the room at the incident side.
For a flexible panel, it was seen that the deformations of the resonator walls
have a large influence on the sound transmission loss. For a stiff panel, the
position of the sound source and the number of sound absorbing walls in the
receiving room hardly influenced the sound transmission loss.

In Section 3.3.1, an approximation method was presented to make a dis-
tinction between the incident and the reflected sound intensities at the incident
side of a panel. Using the pressure signals of a sound intensity probe with two
closely spaced microphones (see Section 5.2.2), this method could also be ap-
plied for (in situ) sound transmission loss measurements in cases where no
reverberation room is available. For spatially averaging the incident sound
intensities, the so-called discrete point method (ISO 9614-1) could be applied.
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Chapter 4

Three-dimensional modelling

4.1 Introduction

Up to now, only one-dimensional and two-dimensional models have been con-
sidered. To be able to model more complex and realistic setups, and to investi-
gate the limitations of the previously presented models, this chapter introduces
three three-dimensional numerical models.

All three methods presented here consist of a structural model of the panel
and an acoustic model of the surrounding air. The coupling between these
two parts is generally referred to as acousto-elastic interaction. For most
modelling in this chapter, the finite element method (FEM) is used. The
advantage of this method is that it is possible to model structures with complex
geometries and different boundary conditions. Moreover, different sound fields
can be considered. However, modelling the complete structure, including the
resonators and the interaction with the air inside and around the resonators,
is computationally very expensive. Especially when the models are used for
optimisation purposes, long computation times are undesirable. To avoid this,
all models presented here are reduced in some way.

Acousto-elastic interaction

The main difference between the three methods presented in this chapter lies
in the modelling of the acousto-elastic interaction. Generally, there is a two-
way coupling between the structure and the air (see Figure 4.1). The air exerts
a force on the structure, inducing vibrations in the structure, and the other
way around, the vibrations of the structure excite the surrounding air. In the
case of one-way coupling, one of these mechanisms is assumed to be weak and
is neglected in the model.
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Structural model Acoustic model

Structural forces

Fluid forces

Figure 4.1: Two-way coupling of structural and acoustic model.

Another difference in the modelling of the acousto-elastic interaction is the
way the flexibility of the resonators is taken into account. In the structural
models of all methods, both the plate and the resonators are modelled as flex-
ible structures. However, in the formulation of the acousto-elastic interaction,
the resonators are in some cases assumed to be rigid. This means that in
these cases no interaction between the deformation of the tubes and the air
inside and around the resonators is taken into account. An overview of the
three methods and the assumptions made for modelling the acousto-elastic
interaction is shown in Table 4.1.

Method Coupling Flexibility of the
resonators included

Structural FEM + Rayleigh One-way No
Reduced FEM Two-way No
Full FEM Two-way Yes

Table 4.1: Aspects regarding acousto-elastic interaction in the three-dimensional models.

In Section 4.2, the Rayleigh integral method is used to model free-field
sound radiation by a panel with resonators which is assumed to be placed in
an infinite baffle. The input for this method is the normal structural velocities
which generally result from a structural analysis. The method is based on
one-way coupling and in the formulation of the acousto-elastic interaction the
resonators are assumed to be rigid. To study the effect of the boundaries
of the panel, first a rigid panel with resonators is considered. Subsequently,
sound radiation by a flexible panel with resonators is discussed. The structure
is modelled here using the FEM.

In Section 4.3, sound transmission is investigated. Both the structure and
the surrounding air are now modelled using the FEM. To reduce computation
time, a reduced model is developed, which takes advantage of the repetitive
pattern of resonators in the panel. Two-way coupling is included, but in the
formulation of the acousto-elastic interaction the resonators are still assumed
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to be rigid.
In Section 4.4, the effect of local deformations of the resonators is studied

by means of a full FEM model of one characteristic area. The model now
includes both two-way coupling and the interaction between the deformations
of the tube and the air inside and around the resonators.

Because the resonators in question are relatively wide, no viscothermal
effects are taken into account in this chapter. Furthermore, only the tube
panel configuration is considered here (see Figure 2.1). However, with some
small adjustments, the models can also be used to analyse sandwich panel
configurations (see Figure 2.9).

4.2 Rayleigh integral method

In the (semi-)analytical models presented in the previous chapters, the panels
with resonators were assumed to be infinitely large. In this section, panels of
finite dimensions are considered, which are assumed to be placed in an infinite
baffle. By means of the Rayleigh integral method, the free-field sound radiation
is predicted for a given vibration response of the structure. In contrast to a
panel without resonators, the surface velocities of the structure are not equal
to the fluid velocities close to the surface. An impedance relation is therefore
derived between these two quantities.

4.2.1 Theory

Wave propagation through a homogeneous fluid such as air is described by the
wave equation [22]. In the case of harmonic time dependence, this equation
reduces to the so-called Helmholtz differential equation. In the absence of
external volume sources, the latter equation can be written as:

∇2p(r) + k2p(r) = 0 (4.1)

where p(r) is the pressure at location r. To solve this equation, the Helmholtz
differential equation is often transformed into the so-called Kirchhoff-Helmholtz
integral equation, which is given by:

α(r)p(r) =
∫

S

[
p(r0)

∂G(r, r0)
∂n

+ iωρ0v(r0) G(r, r0)
]

dS (4.2)

The pressure at location r is now related to the pressure p(r0) and the nor-
mal fluid velocity v(r0) close to the surface. The factor α(r) depends on the
position where the pressure is evaluated; α(r) = 1 for an exterior point and
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α(r) = 0.5 for a point on the (smooth) surface S. The Green’s function
G(r, r0) is the solution of the Helmholtz differential equation in the case of
excitation by a Dirac pulse and is given by:

G(r, r0) =
e−ik|r−r0|

4π|r − r0| (4.3)

For a flat panel in an infinite baffle, the Kirchhoff-Helmholtz integral equation
(4.2) reduces to Rayleigh’s second integral (or the Rayleigh integral) [22]:

p(r) =
iωρ0

2π

∫
S

v(r0)
e−ik|r−r0|

|r − r0| dS (4.4)

A schematic representation of the vectors in this expression is depicted in
Figure 4.2.

dS

p(r)

r

r0

|r − r0|

v(r0)

x

y

z

Baffle Panel

Figure 4.2: Geometric representation of vectors in the Rayleigh integral.

Discretisation

To solve the Rayleigh integral, the structure is divided into N rectangular
elements of equal size, which are small compared to the acoustic wavelength.
The normal surface velocity is assumed to be constant across each element.
Physically, these elements can be seen as a set of elemental radiators or pistons
which each move harmonically with constant velocity amplitude. Applying
this discretisation, equation (4.4) can be written as:

p = Zv (4.5)

where p is the vector with pressures in the field points, v is the vector with N
normal fluid velocities close to the surface of the elemental radiators, and Z is
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acoustic impedance matrix. The elements of this frequency dependent matrix
are given by:

Zij =
iωρ0Se

2π

e−ikrij

rij
(4.6)

where Se is the area of the elemental radiator, and rij = |ri−rj | is the distance
between a field point i and a surface point j. If the pressure is evaluated at
the location of the elemental radiator (i.e. rii = 0), this expression becomes
singular. To avoid this singularity, the diagonal elements in the impedance
matrix are approximated by the impedance of a baffled circular piston of the
same area, so R =

√
Se/π. This impedance is given by [6]:

Zii = ρ0c0

[
(kR)2

2
+

8ikR

3π

]
(4.7)

To determine the radiated sound power, the pressures p are evaluated at the
same points close to the surface as v. By combining equations (2.50) and
(4.5), the radiated sound power can now be written as:

W̄ =
Se

2
Re

[
(v)H psurf

]
=

Se

2
Re

[
(v)H Zsurf v

]
(4.8)

where superscript H denotes the complex conjugate transpose (Hermitian),
and psurf = Zsurf v are the surface pressures, with Zsurf the (square) impedance
matrix evaluated close to the vibrating surface. Hence, for calculating the
radiated sound power, the normal fluid velocities v close to the surface have
to be known.

Fluid velocities

Close to the surface of an acoustically hard panel without resonators, the
normal fluid velocities v are equal to the normal structural velocities vs (see
Figure 4.3(a)). The structural velocities generally result from a structural
analysis. However, for a panel with resonators, the normal fluid velocities v
close to the surface are not equal to the normal structural velocities vs (see
Figure 4.3(b)). Therefore, an impedance relation is derived to relate these two
quantities.

For this purpose, a characteristic area of a panel with resonators is con-
sidered (see Figure 4.4). The characteristic area vibrates harmonically with
a normal structural velocity vs and is assumed to be rigid and small com-
pared to the acoustic wavelength. As in the previous chapters, the air inside
the resonators is approximated by a one-dimensional sound field, so the wave
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Figure 4.3: Normal fluid velocities v close to the surface.

propagation is described by equations (2.21) and (2.26). If viscothermal ef-
fects are neglected, the boundary conditions (2.38) to (2.40) at the end and
the entrance of the resonator, respectively, can be written as:

− 1
ρ0c0

(a − b) = vs (4.9)

aeikL + be−ikL = psurf (4.10)

− Sr

ρ0c0

(
aeikL − be−ikL

)
+ vs(S − Sr) = vS (4.11)

where a and b are vectors with the pressure amplitudes A and B inside the
resonators, for each elemental radiator. Note that, in contrast to the model
presented in Chapter 2, the radiated sound field is now not described by the
solution of the one-dimensional wave equation, but by the Rayleigh integral.

1

B
A psurf, v

vs

vs

vs

x

cv

Radiated sound field

PlateResonator

L

Figure 4.4: Model of sound radiation by a rigid characteristic area.

For a given set of normal structural velocities vs, the surface pressures can
be solved from equations (4.9) to (4.11) as a function of the fluid velocities:

psurf = χ1v + χ0vs (4.12)
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with:

χ1 = iρ0c0
1

Ω tan(kL)

χ0 = iρ0c0

[
1

tan(kL)
− 1

Ω tan(kL)
− 1

sin(kL)

]
(4.13)

According to equation (4.5), the surface pressures can also be written as:

psurf = Zsurf v (4.14)

Combining equations (4.12) and (4.14) finally yields the following expression
for the fluid velocities:

v = χ0(Zsurf − χ1I)−1vs (4.15)

where I is the identity matrix. For the examples in this work, the matrix
Zsurf−χ1I is inverted using the GMRES (generalised minimal residual) method
[44]. The speed and memory usage were further improved by taking advantage
of the fact that the matrix is a Toeplitz matrix [57]. The radiated sound power
is finally calculated by substituting the solution for v into equation (4.8).

It should be stressed that the model of one characteristic area is only used
to derive a relation between the normal structural velocities vs and the normal
fluid velocities v close to the surface. The number of elemental radiators that
is used in the calculations is mainly determined by the convergence of the
solution and does not need to be equal to the number of characteristic areas
in the panel.

4.2.2 Sound radiation

In this section, two examples are discussed. First, the influence of the bound-
aries is demonstrated by assuming the panels with resonators to be rigid.
Second, a flexible panel with resonators is considered.

Rigid panel - influence of the boundaries

In this example, two baffled panels with resonators are considered, both of
different dimensions. The dimensions of the first panel are 1.00 × 1.00 m and
the dimensions of the other panel are 0.40 × 0.40 m. Both panels are assumed
to be rigid, which means that the structural velocity vs is the same for all
elemental radiators (see Figure 4.5(a)). The resonators have a length of L =
0.11 m, while the porosity of the panels is varied. The size of the characteristic
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(a) Baffled panel with
resonators (3D).
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(b) Infinitely large panel
with resonators (1D).

S

vs

Reference

(c) Infinitely large panel
without resonators (1D).

Figure 4.5: Rigid panels with and without resonators, with different boundary conditions.

areas is assumed to be small compared to the acoustic wavelength. Both
acoustic models consisted of 32 × 32 elemental radiators.

To investigate the influence of the boundaries of the baffled panels with
resonators, a comparison is made with the one-dimensional model as described
in Section 2.3.1. Here, the panels with resonators were also assumed to be
rigid. However, instead of baffled, they were assumed to be infinitely large
(see Figure 4.5(b)).
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Figure 4.6: Insertion loss of a baffled (1.00 × 1.00 m) panel with resonators and an
infinitely large panel with resonators (L = 0.11 m).

In Figures 4.6 and 4.7 the insertion loss of the two panels with resonators is
shown for different porosities. The insertion loss was determined as described
in Section 2.4.1. To clearly show the effect of the boundaries, the sound power
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level radiated by an infinitely large, rigid panel without resonators, was used
as a reference here (see Figure 4.5(c)). In the latter case, the radiated sound
power was calculated over an area S with the same dimensions as the baffled
panel.
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Figure 4.7: Insertion loss of a baffled (0.40 × 0.40 m) panel with resonators and an
infinitely large panel with resonators (L = 0.11 m).

Comparison of the baffled panels with resonators with the infinitely large
panels with resonators (see Figures 4.6 and 4.7) shows that if the acoustic
wavelength is small compared to the dimensions Ly and Lz of the panels (i.e.
at higher frequencies), the boundaries do not play a role. However, if the
acoustic wavelength and the dimensions of the panels are of the same order
(i.e. at lower frequencies), the boundaries start influencing the radiated sound
power.

Figures 4.8 and 4.9 show the pressure and normal velocity distributions
over one of the baffled panels with resonators at a frequency where the acoustic
wavelength is small compared to the dimensions of the panels. It can be seen
that the distributions are by no means uniform (but oscillatory). However,
the radiated sound power is the same as would be radiated by a section of a
uniform plane wave of area Ly × Lz. A similar observation was made in the
book by Bies and Hansen [6] concerning the radiation of sound by a baffled
circular piston.
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Figure 4.8: Pressure distribution over a baffled (1.00 × 1.00 m) panel with resonators
at 1700 Hz (L = 0.11 m, Ω = 0.25).
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Figure 4.9: Normal fluid velocity distribution over a baffled (1.00 × 1.00 m) panel with
resonators at 1700 Hz (L = 0.11 m, Ω = 0.25).

Flexible panel

In this example a baffled, flexible panel with resonators is considered (see
Figure 4.10(a)). The panel contains 20 × 20 resonators, and the dimensions
and the material properties of the plate and the resonators are listed in Table
4.2. R is the resonator radius, L is the resonator length, tw is the thickness of
the resonator walls, te is the thickness of the resonator ends, Ly and Lz are the
height and width of the plate, tp is the thickness of the plate, and b is the width
of a characteristic area. The Young’s modulus of the structure is chosen to be
relatively high here to reduce the modal density in the considered frequency
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range. The simply supported panel was structurally excited by applying a
unit force at the arbitrary point (x, y) = (3b, 2b), measured from one of the
corners of the plate.

S

vs

(a) Panel with resonators.

S

vs

Reference

(b) Panel without resonators.

Figure 4.10: Baffled, flexible panels with and without resonators (3D).

Resonator

R 0.0095 m
L 0.11 m
tw 0.0003 m
te 0.0006 m

Plate

Ly 0.50 m
Lz 0.50 m
tp 0.002 m
b 0.025 m

Material

ρ 2710 kg/m3

E 70·1012 N/m2

ν 0.3 -

Table 4.2: Dimensions and material properties of the panel.

Since weak coupling was assumed between the vibration of the panel and
the radiated sound field, the analysis could be performed in two steps. First,
the normal structural velocity distribution vs due to the excitation force was
determined by performing a harmonic response analysis on the structure. This
analysis was performed using the FEM. The panel was modelled using the com-
mercial FEM program Ansys. Second, the structural velocities were imported
in Matlab, where the radiated sound power was determined by means of the
Rayleigh integral method. A schematic representation of this procedure is
depicted in Figure 4.11.

Structural model

FEM

Acoustic model

Rayleigh integral method

Normal structural
velocities

vs

Radiated sound
power level

LW

Figure 4.11: One-way coupling of structural and acoustic model.

The structural model was composed of linear four-node plate elements
(SHELL63). To reduce computation time, the structural analysis was per-
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formed using component mode synthesis (CMS). The acoustic model consisted
of 20 × 20 elemental radiators, coinciding with the characteristic areas of the
panel. The normal structural velocities vs in the centres of the elemental
radiators were calculated by averaging the normal structural velocities of 16
master nodes at the plate boundaries of the characteristic areas. Note that, to
determine the structural response, the entire structure was flexible. However,
in the formulation of the interaction with the air inside the resonators, the
influence of the flexibility of the resonators was neglected.

In Figure 4.12 the radiated sound power level and the insertion loss of
the baffled, flexible panel with resonators are shown. As a reference for the
insertion loss, the radiated sound power of a baffled, flexible panel without
resonators was used (see Figure 4.10(b)). This panel had the same normal
structural velocity distribution (i.e. the same dynamic properties) as the panel
with resonators. For both panels, the Rayleigh integral method was used.
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Figure 4.12: Radiated sound power level and insertion loss of baffled, flexible panel with
resonators and infinitely large, rigid panel with resonators.

Figure 4.12 also shows the prediction for an infinitely large, rigid panel
with resonators (see Figure 4.5(b)). The results are obtained with the one-
dimensional analytical model as presented in Section 2.3.1. The frequency
dependent, normal structural velocity vs that was prescribed to calculate the
radiated sound power equalled the spatial average of the normal structural
velocity vs resulting from the structural analysis of the baffled, flexible panel.

The peaks that appear in the radiated sound power level correspond to the
first six structural eigenfrequencies of the panel. Comparison of the insertion
loss curves again only shows discrepancies in the frequency range where the
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dimensions of the panel are smaller than, or of the same order as the acoustic
wavelength.

4.3 Reduced finite element model

In this section, the transmission of sound through panels with resonators is
modelled using the FEM. In contrast to the model presented in the previ-
ous section, two-way coupling is now present between the structure and the
surrounding air. To reduce computation time, a reduced model is developed
here. In the previous chapters, it was seen that the structure is characterised
by a repetitive pattern of resonators. Advantage can be taken of this by using
substructuring. By means of the Guyan reduction method, so-called superele-
ments are generated to represent the structural part of each characteristic area
(see Figure 4.13). The acoustic domains on both sides of the panel are mod-
elled using standard fluid elements. To enable coupling between the structure
and the air, a new interface element is formulated [28]. Besides acousto-elastic
interaction, this interface element also includes the acoustic behaviour of the
air inside and around the resonators. This means that these air volumes do
not need to be meshed by fluid elements. As will be shown later, the same
interface elements can be used for both sides of the panel.

Same location Same location

Fluid element (air)Fluid element (air) Structural superelement
Interface element Interface element

Figure 4.13: Element types to model a panel with resonators with air on both sides.

4.3.1 Structural model

The number of degrees of freedom (DOF), and thus the computation time, of
the structural model of the panels with resonators can be reduced considerably
by applying substructuring. The reduction method that is used here is Guyan
reduction.
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Guyan reduction

In the Guyan reduction method, the entire set of DOF of a substructure is
condensed to a smaller set of so-called interface DOF or master DOF [25].
This leads to a superelement with a reduced mass and stiffness matrix. For
a panel with resonators, a substructure consists of the structural part of one
characteristic area. Because all characteristic areas are identical, only one
superelement has to be generated. By connecting the substructures at their
shared master nodes, the complete structure is assembled.

To demonstrate the method, the equations of motion for a substructure in
the frequency domain are partitioned into two groups:

−ω2

[
Mmm Mms

(Mms)T Mss

] {
um

us

}
+

[
Kmm Kms

(Kms)T Kss

] {
um

us

}
=

{
fm

f s

}
(4.16)

where us are the internal or slave DOF, and um are the DOF on the interface
boundaries or master DOF. Solving the second set of equations and substitut-
ing this into the first set of equations, would yield a smaller system with only
um as DOF. However, the matrices of the reduced system would be frequency
dependent. Therefore, Guyan suggested neglecting the inertia forces in the
second set of equations. Solving us from the first set of equations then gives:

us = −(Kss)−1(Kms)Tum + (Kss)−1f s (4.17)

The displacements can now be written as:

u =
{
um

us

}
= ψum + φ

with ψ =
{

I
−(Kss)−1(Kms)T

}
and φ =

{
0

−(Kss)−1f s

}
(4.18)

Physically, the jth column of ψ represents the static displacement of the struc-
ture when the jth master DOF has unit displacement and all other master
DOF are kept fixed. This displacement state is also called a constraint mode
[13]. Substitution of equation (4.18) into the full set of equations of motion
and premultiplication by ψT yields the following reduced set of equations:

−ω2Msubum + Ksubum = f sub (4.19)

with the reduced stiffness matrix, mass matrix and load vector of the sub-
structure defined as:

Ksub = ψTKψ Msub = ψTMψ f sub = ψT(f − Mφ− Kφ) (4.20)
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where K, M and f are the full stiffness matrix, mass matrix and load vector,
respectively. Msub and Ksub are again symmetric matrices. The internal DOF
of the ith constraint mode can be recovered from the second set of equations
(4.16) by:

(us)i = − [Kss − ω2
i M

ss]−1[(Kms)T − ω2
i (Mms)T](um)i+

+ [Kss − ω2
i M

ss]−1f s (4.21)

In static analysis, Guyan reduction introduces no additional approxima-
tion into FEM model. However, in dynamic analysis, the original eigenvalue
problem is not exactly preserved, since the inertia forces are not correctly
taken into account.

A more accurate and widely used reduction method for dynamic analysis is
the Craig-Bampton method, a kind of component mode synthesis [16]. Besides
the constraint modes, a number of so-called component modes, i.e. vibration
modes of the individual substructure with its master DOF fixed, is included
as an additional set of generalised DOF. However, in FEM code that was used
for the relevant model, this reduction method could not be applied (yet).

Substructures

An example of a mesh for the generation of the superelements, and the result-
ing superelement are shown in Figure 4.14. Because of the FEM code that was
adopted, the meshes of the structural and the acoustic domain had to coincide.
In the examples presented in this section, the air behind and in front of the
panel is modelled with 20-node hexahedral fluid elements (see Figure 4.13).
The superelements can therefore only contain eight master nodes at the plate
boundaries. For an accurate representation of the structural response, a ninth
master node is located at the end of the resonator, taking into account the
inertia and stiffness effects of the tube. The DOF of the latter node are, how-
ever, not coupled to the acoustic domain. All master nodes have six degrees
of freedom, three displacements and three rotations.

4.3.2 Acousto-elastic interaction

The structure and the air behind and in front of the panel are coupled by
means of a new interface element. This interface element describes both the
acousto-elastic interaction and the acoustic behaviour of the resonators. The
finite element formulation of this element is presented below.
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Structural mesh

Guyan reduction

Structural superelement

Figure 4.14: Structural mesh for generating structural superelement.

Basics for finite element formulation of interface elements

Figure 4.15 shows a schematic representation of a characteristic area with a
resonator of length L. pl and pr are the pressures at the left-hand side and
the right-hand side of the panel, respectively. The purpose of the interface
element is to relate the pressures to the structural displacements of the panel.

pl, vl pr, vr

p2(x), v2(x)

p1(x), v1(x)

L

vs

vs

vs

xcvII cvI

Figure 4.15: Characteristic area with parameters used to formulate the interface element.

For the derivation of the interface element, the characteristic area is as-
sumed to be rigid, so both the plate and the resonator are assumed to vibrate
with the same normal structural velocity vse

iωt. Note that this assumption
is only used to find a relation between the pressures and the structural dis-
placements. In the complete FEM model, the panel is modelled as a flexible
structure, so there can be a velocity distribution over the characteristic areas.
The assumption also implies that no interaction between the deformation of
the tubes and the air inside and around the resonators is taken into account.
The dimensions of the characteristic areas are assumed to be small compared
to the acoustic wavelength.
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Basic equations

The pressures p1 and p2 and the fluid velocities v1 and v2 in axial direction, in-
side and around the resonators (see Figure 4.15), are described by the solutions
of the one-dimensional Helmholtz equation and Euler’s equation:

pj(x) = Aje
ikx + Bje

−ikx j = 1, 2 (4.22)

vj(x) = − 1
ρ0c0

(
Aje

ikx − Bje
−ikx

)
j = 1, 2 (4.23)

The amplitudes of the backward and forward travelling sound waves inside
and around the resonators, Aj and Bj , respectively, are determined by the
boundary conditions of these domains. In this derivation no viscothermal
effects are taken into account. At the right-hand side of the panel, the same
boundary conditions are applied as in Section 2.3.1. These conditions can be
formulated as follows:

v1|x=0 = vs (4.24)
p1|x=L = pr (4.25)

v1|x=L Sr + vs (S − Sr) = vr S (4.26)

At the left-hand side of the panel similar boundary conditions have to be
satisfied. These conditions are described by equations (2.41) to (2.43) and are
written as:

v2|x=L = vs (4.27)
p2|x=0 = pl (4.28)

v2|x=0 Sl + vs (S − Sl) = vl S (4.29)

where Sl is the cross-sectional area of the air volume around the resonators1.
By substitution of equations (4.27) and (4.28) into equations (4.22) and (4.23),
the pressure amplitudes A2 and B2 can be solved. Substituting these solutions
back into equation (4.22), gives the following expression for the pressure at
the panel:

p2|x=L = pl sec(kL) − iρ0c0vs tan(kL) (4.30)

where sec(kL) = 1/ cos(kL). The total force at the left-hand side of the
characteristic area is:

Fl = pl (S − Sl) + p2|x=L Sl (4.31)

1If the wall thickness of the resonator is neglected, Sl = S − Sr.
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Assuming the force to be uniformly distributed over the area, the distributed
load is given by ql = Fl/S. Introduction of the porosity Ωl = Sl/S and
substitution of equation (4.30) into the expression for the distributed load,
gives:

ql = pl[1 − Ωl + Ωl sec(kL)] − iρ0c0vsΩl tan(kL) (4.32)

By using equations (4.23) and (4.29), the fluid velocity at the left-hand side
of the panel can be formulated as:

ρ0c0vl = ρ0c0vs[1 − Ωl + Ωl sec(kL)] + iplΩl tan(kL) (4.33)

Since the velocity perturbations are assumed to be harmonic, relations (4.32)
and (4.33) can be rewritten as:

ql = pl[1 − Ωl + Ωl sec(kL)] + ρ0c0usωΩl tan(kL) (4.34)
ρ0c0al = ρ0c0as[1 − Ωl + Ωl sec(kL)] − plωΩl tan(kL) (4.35)

where us is the normal structural displacement, as is the normal structural
acceleration, and al is the normal fluid acceleration.

In the same way, by using equations (4.24) to (4.26), similar expressions are
found for the distributed load and the fluid acceleration at the right-hand side
of the panel. The only difference is the change of the signs of the accelerations,
velocities and displacements. This means that at both sides of the panel the
same interface elements can be used. The subscripts l and r will therefore be
omitted from now on.

Finite element discretisation

For discretisation, the pressures p and the normal structural displacements us

are written in terms of vectors with nodal pressures p and nodal structural
displacements u, and vectors with interpolation functions Nf and Ns:

p = (Nf )T p, us = (Ns)T u (4.36)

The element matrices for the acoustic part of the interface element are ob-
tained by discretising the wave equation and substitution of equation (4.35).
The element matrices of the structural part are obtained by discretising the
equation of motion and substitution of equation (4.34). For both discretisa-
tions the Galerkin method is applied, which means that the weight functions
are chosen equal to the interpolation functions [59]. Finally, this leads to the
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following set of equations:

−ω2

[
Ms 0

Mpu
fs(ω) Mf + Mpp

fs(ω)

] {
u
p

}
+

[
Ks + Kuu

fs (ω) Kup
fs(ω)

0 Kf

]{
u
p

}
=

=
{
fs
0

}
(4.37)

where Ms, Mf , Ks and Kf are the structural and acoustic mass and stiffness
matrices, respectively, and fs is the structural force vector. The mass coupling
matrices are formulated as:

Mpu
fs(ω) =

∫
Γfs

ρ0 [1 − Ω + Ω sec(kL)] Nf [Ns]T dΓ (4.38)

Mpp
fs(ω) =

∫
Γfs

Ω tan(kL)
ωc0

Nf [Nf ]T dΓ (4.39)

and the stiffness coupling matrices are formulated as:

Kup
fs(ω) = −

∫
Γfs

[1 − Ω + Ω sec(kL)] Ns [Nf ]T dΓ (4.40)

Kuu
fs (ω) = −

∫
Γfs

ρ0c0ωΩ tan(kL) Ns [Ns]T dΓ (4.41)

where Γfs is the interface area. A more detailed description of the derivations
can be found in Appendix D. For a panel without resonators, i.e. Ω = 0 or
L = 0, the matrices Mpp

fs and Kuu
fs become zero and the matrices Mpu

fs and
Kup

fs change into the standard ω-independent coupling matrices. In that case,
the element matrices of the standard acousto-elastic interface elements are
obtained.

4.3.3 Sound transmission

In this section, an example is presented of normal incidence sound transmission
through a panel with resonators. The setup was modelled using an in-house
FEM program, running under Matlab, in which the new interface element
was implemented. First, the structural superelements were generated using
the commercial FEM program Ansys. Subsequently, the resulting element
matrices were imported into Matlab where the complete model was assem-
bled.
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Figure 4.16: Panel with resonators with a room on one side (quarter).

Model

The setup that was modelled is shown in Figure 4.16. A 0.30 × 0.50 m, simply
supported panel with resonators is considered. The panel consists of 20 × 12
characteristic areas with dimensions and material properties as listed in Table
4.3. At the incident side, a uniformly distributed pressure load, representing
a normal incident plane wave, is applied directly on the interface elements. At
the other side of the panel, sound is radiated into a room with five fully sound
absorbing walls. The sound absorbing walls were modelled by prescribing a
dimensionless impedance of one. The depth of the room is Lx = 0.25 m. Since
the structure, the acoustic domain, and the pressure load are all symmetric,
only a quarter of the system had to be considered.

Resonator

R 0.0095 m
L 0.11 m
tw 0.0003 m
te 0.0006 m

Plate

Ly 0.30 m
Lz 0.50 m
tp 0.002 m
b 0.025 m

Material

ρ 2710 kg/m3

E 70·109 N/m2

ν 0.3 -

Table 4.3: Dimensions and material properties of the panel.

Sound transmission loss

The sound transmission loss is defined as the ratio between the incident sound
power and the transmitted sound power. Usually, from FEM calculations only
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total pressures and fluid velocities are known. Therefore, the difficulty is to
make a distinction between the incident and the reflected sound waves at the
incident side of the panel. Yet, in Section 3.3.1, an approximation method was
presented to solve this.

In the present example, however, the pressure load is applied directly to
the interface elements, so no fluid elements are present at the incident side.
The aforementioned approximation method can therefore not be used. Hence,
the incident sound power has to be determined by an alternative approach.
This approach is based on a one-dimensional description of the incident sound
field. Since the sound field is normal incident, this seems to be a fair ap-
proximation2. According to equation (4.22), the prescribed pressure pl at the
surface is written in terms of incident and reflected sound waves:

pl = Al + Bl (4.42)

Together with the boundary conditions (4.27) to (4.29) and equations (4.22)
and (4.23), the unknown pressure amplitude Bl of the incident sound wave
can be solved as a function of the quantities pl and vs:

Bl =
pl

2
[1 + iΩl tan(kL)] +

ρ0c0vs

2
[1 − Ωl + Ωl sec(kL)] (4.43)

The pressures pl are prescribed and the structural velocities vs result from the
FEM analysis3. Using equation (2.51), the normal incident sound intensity Īi

at a certain point on the panel is then calculated by:

Īi =
Re(Bl)2 + Im(Bl)2

2ρ0c0
(4.44)

At the receiving side, the transmitted sound intensities were also calculated
using equation (2.51). In this case, the pressures, determined at the centroids
of the elements, were obtained directly from the FEM analysis. The fluid
velocities were determined by using the derivatives of the shape functions to
calculate the pressure gradients in normal direction at the centroids of the
elements, and subsequently applying Euler’s equation. Using equation (2.50),
the sound powers at both sides of the panel were obtained by integrating the
sound intensities over the surface of the panel. Finally, the sound transmission
loss was determined with equation (3.21).

2However, if fluid elements are also present on the incident side of the panel and the
sound field is random incident, the method presented in Section 3.3.1 is preferred.

3If Ωl = 0 or L = 0, the solution converges to the solution for a panel without resonators.
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Results

Figure 4.17 shows the normal incidence sound transmission loss of the con-
sidered configuration, calculated both with the reduced FEM model and the
one-dimensional analytical model presented in Chapter 2. It is seen that the
trends of the two curves are similar. However, the dynamic behaviour of the
panel has a large influence on the sound transmission loss. In Figure 4.18, the
structural response of the panel is shown. It can be seen that the frequencies
of the resonances and anti-resonances of the panel correspond with the fre-
quencies of the peaks and troughs in the transmission loss curve, respectively.
To demonstrate the acoustic effect of the resonators, the sound transmission
loss is also shown of a panel without resonators, but with the same dynamic
properties. The structural behaviour seems to have the same influence on
both panels. Since no damping is present in the model, the influence of the
eigenfrequencies may be overestimated.
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Figure 4.17: Normal incidence sound transmission loss.

Limitations of the model

For the panels with resonators considered in this thesis, the acoustic frequency
range of interest is approximately between 500 Hz and 2000 Hz. Because the
stiffness of the panels with tubes is relatively low, the modal density of these
panels in this range is very high. Attention should therefore be paid to the
question of whether the accuracy of the structural model is still sufficient.

For a sufficiently accurate acoustic model, generally at least three quadratic
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Figure 4.18: Normal structural displacements at point (y=0.075 mm, z=0.125 mm).

elements per wavelength are required. Since the meshes of the structural and
acoustic domain have to coincide here, the accuracy of the acoustic model is
dependent on the size of the characteristic areas. In this case, the rule of
thumb is obeyed for the frequencies f < c0/3b.

4.4 Full finite element model

In the formulation of the acousto-elastic interaction for the models previously
presented in this chapter, it was assumed that the tube resonators are rigid.
No interaction between the deformation of the tubes and the air inside and
around the resonators was taken into account. In this section, the influence of
the flexibility of the resonators is examined by means of a fully coupled FEM
model of one characteristic area, placed in a square impedance tube. Sound
radiation as well as sound transmission are considered.

4.4.1 Sound radiation

The modelled setup for demonstrating the influence of the flexibility of the
resonator on sound radiation is shown in Figure 4.19. In Table 4.4 the dimen-
sions and the material properties of the characteristic area and the impedance
tube are listed, respectively. The dimensions and material properties of the
resonator are the same as those of the tubes used for the panel with resonators
presented in Chapter 5. To investigate the influence of porosity and the flex-
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ibility of the resonators, only the width b of the characteristic area and the
Young’s modulus E were varied.

PlateWallEnd Sound absorbing wall

Limp

L

R

b

Prescribed displacement

Impedance tube

Figure 4.19: Setup for sound radiation by a characteristic area into an impedance tube.

Dimensions

R 0.0122 m
L 0.109 m
tp 0.002 m
tw 0.00028 m
te 0.0006 m
Limp 0.10 m

Material

ρ 2710 kg/m3

ν 0.3 -

Table 4.4: Dimensions and material properties of the modelled setup.

Model

The setup was modelled using the FEM program Ansys. The plate and
the resonator were meshed with linear shell elements (three-node SHELL63
elements) and the air inside the resonator and in the impedance tube was
modelled by linear tetrahedral fluid elements (four-node FLUID30 elements).
An example of the mesh is shown in Figure 4.20. The structure and the air
were fully coupled. At the end of the impedance tube, full sound absorption
was imposed by prescribing a dimensionless impedance of one. Excitation took
place by prescribing a harmonic unit displacement at the edges of the plate.
Up to the so-called cut-off frequency, the sound field in the impedance tube
approximates a one-dimensional sound field. For a square tube, this frequency
is f = c0/2b. For the setup considered in this section, this frequency is far
above the frequency range of interest. The insertion loss could therefore be
calculated in the same way as described in Section 2.4.1.
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Figure 4.20: FEM mesh of characteristic area and air in the impedance tube.

Results

The structure of the characteristic area consists of three parts: the plate, the
resonator walls and the resonator end. In the simulations, these parts were
considered to be either flexible (E = 70 · 109 N/m2) or rigid (E = 70 · 1015

N/m2), successively. The numerical results are compared with the results of
the one-dimensional analytical model as presented in Chapter 2, where the
entire characteristic area was assumed to be rigid. The effective resonator
length (see Section 2.5) that was used in the latter model is L = 0.1115 m.

In Figure 4.21 the insertion loss is shown for characteristic areas with
different flexible and rigid parts. For an entirely rigid characteristic area, the
agreement with the results of the one-dimensional analytical model is good
(see Figure 4.21(a)). If only the plate, only the resonator walls or only the
resonator end are flexible, there are hardly any differences with the entirely
rigid case. The same holds if both the plate and the resonator end are flexible.
These results are not shown in Figure 4.21.

In the case where both the plate and the resonator walls are flexible, dis-
crepancies appear between the one-dimensional analytical model and the FEM
model (see Figure 4.21(b)). These discrepancies increase with increasing fre-
quencies and decreasing porosity. Due to the inertia forces that are caused
by the prescribed displacement at the edges of the characteristic area and the
pressure inside the resonator, the resonator tube deforms in axial direction (see
Figure 4.22(a)). Also the plate deforms, which means that the axial structural
velocity varies over the surface. Both these matters cause differences in am-
plitude between the axial structural velocities of the plate and the resonator
end, while in the one-dimensional analytical model it was assumed that these
velocities are uniform. Figures 4.23 and 4.24 show the ratios of the velocities
ue at the centre of the resonator end and up at one of the corners of the plate.
It can be seen that the differences increase with increasing frequencies and
decreasing porosity.
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(a) Rigid characteristic area.
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(b) Flexible plate and resonator walls.
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(c) Flexible resonator.
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(d) Flexible characteristic area.

Figure 4.21: Insertion loss for characteristic areas with different flexible and rigid parts
and different porosities.

Smaller but similar effects are observed if both the walls and the end of the
resonator are flexible (see Figure 4.21(c)). However, the differences in velocity
are smaller and the discrepancies increase less with frequency. An example of
the deformation shape is shown in Figure 4.22(b).

If the characteristic area is entirely flexible, the effects of the deformations
of all parts are combined (see Figure 4.22(c)) and the differences with the
one-dimensional analytical model are the largest (see Figure 4.21(d)). Never-
theless, the trends of the curves remain reasonably the same.
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(a) Flexible plate and res-
onator walls.  

(b) Flexible resonator.
 

(c) Flexible characteristic
area.

Figure 4.22: Deformation shapes at 2000 Hz for characteristic areas with different flexible
and rigid parts (Ω=0.45).
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Figure 4.23: Ratio ue/up of the axial structural velocities of the centre of the resonator
end and one of the corners of the plate (Ω=0.30).
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Figure 4.24: Ratio ue/up of the axial structural velocities at the centre of the resonator
end and at one of the corners of the plate (Ω=0.45).

4.4.2 Sound transmission

The modelled setup for demonstrating the influence of the flexibility of the
resonator on sound transmission is shown in Figure 4.25. The dimensions and
material properties are listed in Table 4.4. The length of the impedance tube
at the incident side is LimpI = 0.15 + L. The length of the impedance tube at
the receiving side is LimpII = Limp.

PlateWallEnd
Sound absorbing wall

LimpII

L

R

b
LimpI

Pressure load Impedance tube

Figure 4.25: Setup for sound transmission through a characteristic area.

Model

The setup is modelled in the same way as the setup for sound radiation.
Only the excitation of the structure is different now. Acoustic excitation
is applied by prescribing a uniformly distributed pressure at one end of the
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impedance tube (see Figure 4.25). The boundaries of the characteristic area
are unconstrained.

Sound transmission loss

Because the sound field in the impedance tube approximates a one-dimensional
sound field, the sound transmission loss can be calculated as described below
[46]. Using equation (4.22), the pressures at both sides of the characteristic
area are expressed as a function of x (see Figure 4.26). As a result of the FEM
analysis, the pressures p I, p II, p III and p IV at four locations in the impedance
tube are then used to determine the amplitudes of the backward and forward
travelling sound waves4:

A1 =
i
(
pIIe

−ikxI − pIe
−ikxII

)
2 sin [k(xI − xII)]

B1 =
i
(
pIe

ikxII − pIIe
ikxI

)
2 sin [k(xI − xII)]

(4.45a)

A2 =
i
(
pIVe−ikxIII − pIIIe

−ikxIV
)

2 sin [k(xIII − xIV)]
B2 =

i
(
pIIIe

ikxIV − pIVeikxIII
)

2 sin [k(xIII − xIV)]
(4.45b)

With these pressure amplitudes, the transmission loss is subsequently calcu-
lated as described in Section 2.4.2.

A2

B2

A1

B1

Characteristic area Sound absorbing wallPressure load

xII

xI

xIII

xIV

pIII pIV

x

pI pII

LimpI LimpII

Figure 4.26: Coordinate system for determining pressure amplitudes.

4Since the end of the impedance tube is fully sound absorbing, pressure amplitude A2

equals zero here.
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Results

In Figure 4.27 the sound transmission loss is shown for characteristic areas
with different flexible and rigid parts and different porosities5. For an entirely
rigid characteristic area, the agreement with the results of the one-dimensional
analytical model is good (see Figure 4.27(a)). If only the plate is flexible, there
are again hardly any differences compared with the entirely rigid case. These
results are not shown in Figure 4.27.

However, if only the walls or only the end of the resonator are flexible,
the differences become more pronounced (see Figures 4.27(b) and 4.27(c)).
The flexibility of the structure has much more influence now than in the case
of sound radiation as presented in the previous section. If the porosity is
Ω = 0.30, the differences are rather small, but if the porosity is Ω = 0.45,
the sound transmission loss is reduced considerably. Also, the peaks in the
transmission loss curve disappear. The discrepancies are again mainly caused
by the differences in amplitude between the axial structural velocities of the
plate and the resonator end (see Figures 4.28 and 4.29). However, in the case
of sound transmission, these effects are the largest around the frequency for
which the acoustic wavelength equals half of the length of the resonator, while
for sound radiation they increase with frequency. If the characteristic area is
entirely flexible, the effects of the deformations of all parts are combined and
the differences with the one-dimensional analytical model are the largest (see
Figure 4.27(d)). In some cases the sound transmission loss is increased, in
other cases the sound transmission loss is reduced.

5The porosity was varied by varying the width b of the characteristic areas. The mass of
the configurations with the different porosities was therefore slightly different.
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(a) Rigid characteristic area.
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(b) Flexible resonator walls.
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(c) Flexible resonator end.
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(d) Flexible characteristic area.

Figure 4.27: Transmission loss for characteristic areas with different flexible and rigid
parts and different porosities.
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Figure 4.28: Ratio ue/up of the axial structural velocities of the centre of the resonator
end and one of the corners of the plate - rigid characteristic area (solid lines), flexible
resonator walls (dash-dotted lines), and flexible resonator end (dashed lines).
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Figure 4.29: Ratio ue/up of the axial structural velocities at the centre of the resonator
end and at one of the corners of the plate - flexible characteristic area.
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4.5 Concluding remarks

In this chapter, three different numerical models were presented, which include
the boundedness and flexibility of panels with resonators. These methods can
be used to model more realistic setups and to investigate the limitations of
the (semi-)analytical models as presented in the previous chapters.

Using the Rayleigh integral method, free-field sound radiation of a baffled
panel with resonators was considered. A comparison was made with an in-
finitely large panel with resonators, modelled as presented in Chapter 2. In
the case of a rigid panel, the radiated sound power is only influenced by the
boundaries of the panel if the acoustic wavelength is large compared to the
dimensions of the panel. At higher frequencies, the influence of the boundaries
is negligible.

Another model, based on the FEM, was presented to predict the trans-
mission of sound through panels with resonators with more complex geome-
tries and different boundary conditions. Because a fully coupled model of
the structure and the air inside and around the resonators is computationally
expensive, a reduced model was developed. A new type of interface element
was formulated, which not only enables coupling between the structural part
of the model and the air behind and in front of the panel, but also includes
the acoustic behaviour of the resonators. Normal incidence transmission loss
calculations for a specific resonator panel configuration showed similar trends
as the results obtained with the one-dimensional analytical model presented
in Chapter 2. The dynamic behaviour of the panel has a large influence on
the sound transmission loss. Structural resonances cause a decrease in sound
transmission loss, while, on the other hand, anti-resonances cause an increase.

In the formulation of the acousto-elastic interaction for the previous pre-
sented models, it was assumed that the tube resonators are rigid. No inter-
action between the deformation of the tubes and the air inside and around
the resonators was taken into account. However, a fully coupled FEM model
of one characteristic area, placed in a square impedance tube, showed that
local deformations of the plate and the resonator can have a large influence
on the radiated sound power or sound transmission loss. For relatively large
deformations, the flexibility of the structure can thus not be neglected.
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Chapter 5

Experimental validation

5.1 Introduction

In the previous chapters, different models were presented to predict the trans-
mission of sound through panels with resonators. To reduce computation time
and make them into fast analysis tools for optimisation and design, some as-
sumptions and simplifications were made. To verify whether these assumptions
and simplifications are valid, sound transmission loss measurements were per-
formed on two resonator panels of different configurations: a panel with tubes
and a sandwich panel. The last configuration can be manufactured easily by
perforating one of the skin panels of a common honeycomb sandwich panel
(see Figure 5.1). The sound transmission loss was measured using the sound
intensity method.

Perforated skin panel

Honeycomb core

Skin panel

Figure 5.1: Honeycomb sandwich panel with resonators.

In Section 5.2, the experimental setup and the experimental method are
presented. Next, in Section 5.3, the experimental results are discussed. First,
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the effect of the tube resonators is analysed by comparing the measured sound
transmission with the mass law. Subsequently, a comparison is made be-
tween the experimental results and the results obtained with the numerical
and (semi-)analytical models presented in the previous chapters.

5.2 Experimental procedure

The traditional method for measuring the sound transmission loss of a panel
is the two-room method [14, 26]. For this method, two reverberation rooms
are used, which are separated by the panel under investigation. In the sending
room a diffuse sound field is generated by a sound source and the spatially
averaged sound pressure levels in both rooms are determined by two moving
microphones. Besides the sound pressure levels, the reverberation time of the
receiving room also has to be measured.

Instead of a reverberation room, a less reverberant (preferably anechoic)
room can also be used at the receiving side [14, 26]. In that case, the radiated
sound power in the receiving room is measured directly with a sound intensity
probe. An advantage of this so-called sound intensity method is that it makes
it possible to evaluate the relative, local contributions of different parts of a
panel to the total sound transmission.

The sound transmission loss of the panels presented in this work were
measured by means of the sound intensity method.

5.2.1 Experimental setup

The experiments were performed in a laboratory setup at the National Aero-
space Laboratory NLR [29, 52, 53]. A schematic overview of the setup is
depicted in Figure 5.2. The panel was mounted between the reverberation
room and a semi-anechoic receiving room by bolting it between two wooden
frames with rubber strings (see Figure 5.3(a) and Appendix E). Because of
the large thickness of the sandwich panels, flanking noise had to be suppressed
by covering the sides of these panels with lead (see Figure 5.3(b)).

In the reverberation room, four speakers placed near the corners were fed
with white noise to generate sound in the frequency range of 500-5600 Hz.
Another speaker, a so-called dodecahedron, was used to generate sound below
500 Hz. During the measurements, this sound source was located at position
3, as marked in Figure 5.2. The sound pressure level in the reverberation
room was measured with a microphone on two rotating booms, scanning the
surface of a sphere. The intensity level of the sound that was transmitted
through the panel via a niche into the semi-anechoic room was measured with
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a sound intensity probe. The sound intensity was measured over the 1.00
× 1.00 m cross-section of the niche at a distance of about 0.74 m from the
panel. The niche has an average depth of 0.87 m and the volume of the semi-
anechoic room is about 205 m3. Additional information on the dimensions
of the reverberation room, the niche, and the possible positions of the low
frequency sound source can be found in Appendix E. A detailed list of the
measurement equipment is also included.

Reverberation room
Semi-anechoic room

Rotating boomMicrophone

Panel

Sound intensity probe

Niche Scanning robot

High frequency sound source

Low frequency sound source
(possible position)

1

2

3

Figure 5.2: Experimental setup for sound transmission loss measurements.

To determine the radiated sound power in the semi-anechoic room, the
sound intensity measured normally to the panel surface can be spatially av-
eraged using two standardised procedures: the discrete point method (ISO
9614-1) or the scanning method (ISO 9614-2). For the experiments presented
in this thesis, the scanning method was used. For each panel, the sound trans-
mission loss was determined by taking the average of a vertical scan and a
horizontal scan (see Figure 5.4). Part of the measurements was performed
by a (silent) robot and part of the measurements was performed manually.
The scanning speed was approximately 75 mm/s. Measurements were also
performed using the discrete point method, but the differences were shown to
be relatively small.
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(a) Panel in the experimental setup. (b) Flanking noise suppression.

Figure 5.3: Panel in the experimental setup (incident side) and lead strips for flanking
noise suppression of the sandwich panels.

Horizontal scan Vertical scan

Figure 5.4: Scanning patterns for sound power measurement by the scanning method.

5.2.2 Sound intensity method

As far as possible and appropriate, the sound transmission loss was mea-
sured according to the sound intensity method specified in ISO 15186-1. The
measurements were performed in a frequency range of one-third octave bands
(1/3OBs) with centre frequencies ranging from 100 to 5000 Hz. In this section,
the principles of the sound intensity method are further explained.
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Sound transmission loss

As mentioned before, the sound transmission loss is defined as the ratio of the
incident sound power W̄i and the transmitted sound power W̄t, in logarithmic
form:

TL = 10 log10

(
W̄i

W̄t

)
(5.1)

From a sound intensity measurement, the sound power W̄ is obtained by:

W̄ = (Īn)avg S (5.2)

where S is the scanned surface area and (Īn)avg is the spatially averaged sound
intensity in the direction n normal to that surface area. Using this definition,
the sound transmission loss can also be written as:

TL = 10 log10

[
(Īi)avg

(Īt)avg

]
(5.3)

where (Īi)avg and (Īt)avg are the spatially averaged incident and transmitted
sound intensities normal to the surface area S, respectively. In terms of sound
intensity levels, the sound transmission loss can also be written as:

TL = (LI)avg i − (LI)avg t (5.4)

where (LI)avg i is the spatially averaged incident sound intensity in the rever-
beration room and (LI)avg t is the sound intensity level normal to and averaged
over the measuring surface S in the receiving room. The general definition of
the sound intensity level LI is:

LI = 10 log10

(
Īr

Īref

)
(5.5)

where Īr is the sound intensity in an arbitrary direction r and Īref is the
reference sound intensity:

Īref =
p2
ref

ρ0c0
= 10−12 Wm−2 (5.6)

pref = 2 · 10−5 Pa is the reference pressure of a plane wave propagating in
a free field.1 As was also seen in the previous chapters, the incident sound

1For plane and spherically propagating waves, the sound intensity and the root mean
squared pressure are related by Īr = p2

rms/ρ0c0.
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intensity cannot be measured directly. However, for a diffuse sound field, which
approximates the sound field in the reverberation room, the intensity of the
sound incident on the panel can be determined by measuring sound pressure.
In a diffuse sound field, sound is reflected so many times that it travels in all
directions with equal magnitude and probability [9]. Consequently, the sound
intensity Ī at any point in the field is zero. However, in theory, a so-called
one-sided sound intensity Īr in an arbitrary direction r can be defined. The
one-sided sound intensity is the intensity of the sound passing through a plane
of unit area from one side (i.e. the sound intensity in one direction, ignoring the
equal and opposite component). For a diffuse sound field, the relation between
the root mean squared pressure prms and the one-sided sound intensity is as
follows [6]:

Īr =
p2
rms

4ρ0c0
(5.7)

By substituting this expression into equation (5.5) and using equation (5.6),
the incident sound intensity level in the reverberation room can be written as:

(LI)avg i = (Lp)avg i − 6 dB (5.8)

where (Lp)avg i is the spatially averaged sound pressure level in the reverber-
ation room. The sound pressure level Lp is defined as:

Lp = 10 log10

(
p2
rms

p2
ref

)
(5.9)

Substituting equation (5.8) into equation (5.4), finally gives the following ex-
pression for the sound transmission loss:

TL = (Lp)avg i − (LI)avg t − 6 dB (5.10)

The spatially averaged sound pressure level (Lp)avg i in the reverberation room
is measured with the microphone on the two rotating booms, and the spatially
averaged sound intensity level (LI)avg t in the receiving room is measured with
the sound intensity probe.

Sound intensity probe

The sound intensity probe that is used here consists of two closely spaced
microphones, mounted face-to-face and separated by a solid spacer (see Figure
5.5). By means of the two-microphone method, an estimate of the sound
intensity is found at the centre of the spacer [21].
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Microphone 1 Microphone 2

Spacer

Δrp̂1

p̂2

∂p̂

∂r

p̂2 − p̂1

Δr

Sound wave

r

Figure 5.5: Approximation of the pressure gradient by a sound intensity probe.

According to equation (2.51) the sound intensity is the time-averaged prod-
uct of the pressure and the fluid velocity. The fluid velocity perturbation v̂r(t)
in direction r is related to the pressure gradient by the linearised Euler equa-
tion:

ρ0
∂v̂r(t)

∂t
= −∂p̂(t)

∂r
(5.11)

In the present method, the fluid velocity is estimated by using a finite difference
approximation of the pressure gradient (see Figure 5.5). Furthermore, the
pressure at the centre of the spacer is approximated by the average pressure
of the two microphones. These two approximations can be written as:

∂p̂

∂r
≈ p̂2 − p̂1

Δr
p̂ ≈ p̂1 + p̂2

2
(5.12)

where Δr is the spacer length, and p̂1 and p̂2 are the pressures measured by
the two microphones [10, 19]. In practice, the time domain signals are usually
transformed to the frequency domain using a fast Fourier transform (FFT).
Using equation (5.11), the estimation for the fluid velocity then becomes:

vr ≈ i
ωρ0

p2 − p1

Δr
(5.13)

So with equation (2.51), the sound intensity in direction r can be written as:

Īr ≈ − Im(G12)
ωρ0Δr

(5.14)

where G12 = p1p
∗
2/2 is the one-sided cross-spectrum between the two pressure

signals.
The high frequency limit of the sound intensity probe is determined by

the finite difference approximation error. The approximation of the pressure
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gradient is only accurate if the acoustic wavelength is large compared to the
spacer length. As a rule of thumb, the acoustic wavelength must be larger
than six times the spacer length for the accuracy to be within 1 dB [9]. For
the spacer lengths of Δr = 50 mm and Δr = 12 mm, which were used in the
present work, the high frequency limits are approximately 1143 Hz and 4764
Hz, respectively.

A small time delay between the two microphone channels introduces a small
phase change, which is called a phase mismatch error. This phase mismatch
error imposes a low frequency limit on the sound intensity probe. The phase
mismatch is quantified by the so-called pressure-residual intensity index, which
is the difference between the sound pressure level and the sound intensity level
when the microphones are exposed to the diffuse sound field of an intensity
calibrator. Ideally, the measured sound intensity should then be zero.

Another important indicator for the accuracy of measurements by the
sound intensity probe is the pressure-intensity index δpI . This quantity is
defined as the difference between the sound pressure level and sound inten-
sity level normal to the measuring surface, at the same point. The pressure-
intensity index is a function of the form of the sound field, the position and
orientation of the probe in that sound field, and the phase mismatch. For a
sound reflecting test specimen, the pressure-intensity index should be δpI < 10
dB and for a test specimen with a sound absorbing surface in the receiving
room, it should be δpI < 6 dB.

More details about possible errors inherent to the sound intensity method
can, for example, be found in the work of Fahy [21] and Jacobsen [33].

5.2.3 Diffusivity

The volume of the reverberation room is approximately 33 m3, resulting in
a diffuse sound field for frequencies of about 500 Hz and higher [53]. To
determine the measurement error due to insufficient diffusivity of the sound
field below 500 Hz, sound transmission loss measurements were performed for
three different positions of the low frequency sound source (see Figure 5.2 and
Appendix E). Figure 5.6 shows the results of an arbitrary panel. The sound
transmission loss is presented in one-third octave bands. Below the 160 Hz
1/3OB the accuracy is poor. From the 160 Hz 1/3OB to the 315 Hz 1/3OB the
differences are within 2.8 dB and above the 315 Hz 1/3OB the discrepancies
are within 1.6 dB. Since the main focus for the test panels is on the frequency
range of 500 Hz and higher, this accuracy is considered to be sufficient. The
other measurements presented in this section were performed with the low
frequency sound source located at position 3 (see Figure 5.2) and a sound
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intensity probe with a microphone spacing of Δr = 12 mm.
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Figure 5.6: Measured sound transmission loss of an arbitrary panel for different positions
of the low frequency sound source and different spacer lengths.

5.2.4 Test panels

In the experimental setup, two resonator panels of different configurations were
tested: a panel with tubes and a sandwich panel [27]. The panel with tubes
consists of a 2.0 mm thick, perforated aluminium plate with aluminium tubes
attached to it. The second panel is an aluminium honeycomb sandwich panel
with one of the skin panels perforated (see Figure 5.1). Photos of both panels
are shown in Figures 5.7 and 5.8. The resonators of the two panels were tuned
to achieve a large increase in transmission loss in the frequency range of 1000-
2000 Hz. In Table 5.1 the dimensions and the mass of the characteristic areas
are shown. Since the sandwich panel is relatively stiff, its first eigenfrequency
is relatively high and the coincidence frequency is relatively low. Therefore,
the sound transmission characteristics may differ from those of a thin flat
plate. To verify whether the results can still be compared with the mass
law, an unperforated honeycomb sandwich panel, here referred to as sandwich
reference panel, was also tested. Both sandwich panels consist of a 109 mm
thick 2.3-1/4-10 (5052)2 Hexweb R© aluminium honeycomb core and two 0.56
mm thick aluminium skin panels. The dimensions of all panels are 1.08× 1.08
m. The size of the apertures in the wooden frames for the suspension (see
Appendix E), i.e. the size of the measuring surface, is 1.00 × 1.00 m.

2Density [lb/ft3] - cell size (two times the inradius) [inches] - nominal foil thickness [10−4

inches] (alloy type).
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L [m] R [m] b [m] Ω [-] m̄ [kg/m2]

Panel with tubes 0.109 0.0122 0.0305 0.50 9.74
Sandwich panel 0.110 0.0125 0.0315 0.49 6.88
Sandwich reference panel - - - - 8.13

Table 5.1: Dimensions and mass of the characteristic areas.

(a) Panel with tubes. (b) Sandwich panel.

Figure 5.7: Photos of test panels with resonators.

5.3 Experimental results

In this section, the results of the sound transmission loss measurements are
presented. To demonstrate the effect of the resonators, the results are first
compared with the mass law, i.e. the sound transmission loss of a flat panel
with the same mass, but without resonators. Subsequently, a comparison
is made between the experimental results and the results obtained with the
models presented in the previous chapters.
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(a) Panel with tubes. (b) Sandwich panel.

Figure 5.8: Details of test panels with resonators.

5.3.1 Comparison with mass law

Previously, normal incidence sound transmission through an infinitely large,
isotropic panel without resonators was described by equation (2.58). For a
panel of finite dimensions, the normal incidence mass law is corrected as follows
[3, 41]:

TL = 10 log10

[
1 +

(
m̄ω

2ρ0c0

)2
]
− 10 log10(2σd) (5.15)

where σd is the radiation efficiency. Generally, the radiation efficiency is de-
fined as the ratio between the average acoustic power radiated per unit area
of a vibrating surface and the average acoustic power radiated per unit area
of a piston that is vibrating with the same average mean square velocity at a
frequency for which kR � 1 (where R is the effective radius of the piston) [20].
In the case of sound transmission through a panel, the radiation efficiency is
dependent on the size of the panel and on the angle of incidence. For a flat,
square plate, surrounded by an infinite rigid baffle, excited by a diffuse sound
field, the radiation efficiency can be approximated by [41]:

σd =
1
2

[
0.2 + ln

(
k
√

S
)]

(5.16)

where S is the area of the radiating surface of the test panel.
In Figures 5.9, 5.10 and 5.11 the measured sound transmission loss of the

test panels is compared with the mass law. The panel with tubes was measured
with the resonator openings at the receiving side and the sandwich panel was
measured with the resonator openings at the incident side. Later, it will be
shown that the orientation of the panel does not have a very large influence.
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Figure 5.9 shows that between the 400 Hz 1/3OB and the 1600 Hz 1/3OB,
the sound transmission loss of the panel with tubes is larger than the mass law.
Maximum increases of 7.1 dB in the 800 Hz 1/3OB and 3.9 dB in the 1600 Hz
1/3 OB are obtained. However, from the 2000 Hz 1/3OB, the transmission
loss is smaller than the mass law. A maximum decrease of 15 dB is observed
in the 5000 Hz 1/3OB.
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Figure 5.9: Measured sound transmission loss of panel with tubes compared with the
mass law.

The measured sound transmission loss of the sandwich reference panel is
shown in Figure 5.10. The first eigenfrequency of the mounted sandwich ref-
erence panel is 395 Hz. Below this frequency the mass law does not apply.
This is also seen in the measurements. However, from the 400 Hz 1/3OB, the
differences between the measured transmission loss and the mass law are less
than 3.0 dB. In the frequency range for which the resonators of the sandwich
panel were tuned, the differences are even smaller. Therefore, it can be con-
cluded that from the 400 Hz 1/3OB, the transmission loss of the sandwich
panel can be compared with the mass law.

The measured sound transmission loss of the sandwich panel is shown
in Figure 5.11. The first eigenfrequency of the mounted sandwich panel is
375 Hz. Below this frequency, the mass law does not apply. In the entire
frequency range above, the sound transmission loss of the sandwich panel is
larger than the mass law, and thus also larger than the sound transmission loss
of the sandwich reference panel. This means that perforating one of the skin
panels of a honeycomb sandwich panel is beneficial for the reduction of sound
transmission. From the 400 Hz 1/3 OB, maximum increases are obtained of
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Figure 5.10: Measured sound transmission loss of sandwich reference panel compared
with the mass law.

6.2 dB in the 630 Hz 1/3OB, 7.2 dB in the 1250 Hz 1/3OB, and 9.2 dB in the
4000 Hz 1/3OB, compared with the mass law.
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Figure 5.11: Measured sound transmission loss of sandwich panel compared with the
mass law.

Orientation of the panel

To investigate the influence of the orientation of the panel, the sandwich panel
was tested both mounted with the resonator openings at the receiving side and
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mounted with the resonator openings at the incident side. A comparison of
the results is shown in Figure 5.12. From the 400 Hz 1/3OB, the differences
are less than 2.5 dB. Since these discrepancies are also partially related to the
repeatability of the measurements, it can be concluded that the orientation
of the panel does not have a very large influence on the measured sound
transmission loss.
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Figure 5.12: Measured sound transmission loss of sandwich panel with resonator openings
at the incident side (grey) and with resonator openings at the receiving side (black).

5.3.2 Comparison with models

In this section, the measured sound transmission loss of the two panels with
resonators is compared with the results of the models presented in the previous
chapters. Comparisons are made with the one-dimensional analytical models
as described in Section 2.3.2, the reduced FEM model presented in Section
4.3, and the full FEM models of one characteristic area as described in Section
4.4.2. First, the models of the test panels are presented. Then, a comparison
is made between the calculated and the measured results. Finally, the validity
of the models is discussed.

One-dimensional analytical model

The one-dimensional analytical models of the two panels were composed as
described in Section 2.3.2. The dimensions and mass of the resonator config-
urations are shown in Table 5.1.
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The resonators of the panel with tubes are relatively wide, which means
that the shear wave numbers of the air inside and around the resonators are
large, so viscothermal effects are negligible. The resonators of the sandwich
panel, however, consist of several narrower honeycomb cells (see Figure 5.1).
Consequently, the shear wave numbers of the air inside the honeycomb struc-
ture are much smaller and viscothermal effects play a more important role.
To calculate the propagation coefficient Γ and the polytropic coefficient n, an
equivalent resonator radius Req was chosen such that the shear wave number of
the resonator equals the shear wave number of one honeycomb cell. According
to equation (2.27) this implies that Req = Rh, where Rh is the inradius of a
hexagonal honeycomb cell3. With the porosity as given in Table 5.1, an equiv-
alent width beq of the characteristic area was calculated by beq = Req

√
π/Ω.

It should be noted that these two equivalent dimensions were only used to
calculate the propagation coefficient and the polytropic coefficient.

In Section 2.5 it was mentioned that, due to inlet effects, the effective
length of the resonator L = Lphy + δ is larger than the physical length of
the resonator. For a perforated plate with a rectangular pattern, the end
correction δ is given by [37]:

δ = 0.79R

[
1 − 1.47

√
πR2

b2
+ 0.47

(
πR2

b2

)3/2
]

(5.17)

For the panel with tubes, this end correction was used at both sides of the
panel (δ = 1.2 · 10−3 m). In the literature, no expression was found for the
side of the panel where the tubes are closed. For the sandwich panel, the end
correction was only used for air inside the resonators (δ = 1.3 · 10−3 m).

Reduced finite element model

The reduced FEM model of the panel with tubes was composed as described
in Section 4.3.34. The parameters that were used are listed in Tables 5.1 and
5.2. The pressure excitation was the same as in Section 4.3.3 and the room at
the receiving side had a depth of Lx = 0.244 m (see also Figure 4.16).

3The area of a hexagon is S = 2
√

3R2
h and the perimeter of a hexagon is P = 4

√
3Rh.

4Only a reduced FEM model of the panel with tubes is considered. For the sandwich
panel, the interface elements as presented in Section 4.3.2 have to be adjusted to include
also the effect of the air around the resonators. This is not included in the present work.
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Dimensions

tp 0.002 m
tw 0.00028 m
te 0.0006 m
Ly 0.976 m
Lz 0.976 m

Material

ρ 2563 kg/m3

E 70·109 N/m2

ν 0.3 -

Table 5.2: Dimensions and material properties of panel with tubes.

Full finite element model

The full FEM models of one characteristic area of the two panels with res-
onators were composed as described in Section 4.4. The dimensions and ma-
terial properties that were used, are listed in Tables 5.1, 5.2 and 5.3. The
dimensions of the impedance tube are the same as in Section 4.4.2.

To model the entire honeycomb structure, the air inside the honeycomb
cells, and the interaction between the air and the structure is computationally
expensive. For the characteristic area of the sandwich panel, therefore, a sim-
plified model was used as shown in Figure 5.13. The mass of the honeycomb
structure was included in the mass of the resonator walls by tuning the density
ρw such that the mass per unit area of the structural model and that of the
panel which was tested are the same. In a honeycomb sandwich panel, the
honeycomb structure supports the two skin panels over the full surface. This
makes the structure rather stiff. In the setup depicted in Figure 5.13, the two
plates are only supported at the location of the resonator tube, so the corners
of the plate are more flexible. To model the additional stiffness due to the
support of the honeycomb structure, the Young’s modulus Ep of the plates
was chosen somewhat higher than the regular Young’s modulus of aluminium.
The same holds for the Young’s modulus Ew of the resonator walls. Because
the radius of the resonator is much larger than the inradius of the honeycomb
cells, the walls are more flexible, so the Young’s modulus was chosen higher
to increase the stiffness. It should be noted that the parameters in this model
are not optimised to represent the test panels as well as possible. The main
aim is to show the influence of the flexibility of the structure.

To enable a better comparison between models and measurements, the
results of all models presented in this section were corrected with the same
frequency dependent factor σd as the mass law given by equation (5.15).
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Dimensions

tp 5.6·10−4 m
tw 2.54·10−5 m

Material

ρp 2710 kg/m3

ρw 20800 kg/m3

Ep 600·109 N/m2

Ew 600·109 N/m2

ν 0.3 -

Table 5.3: Dimensions and material properties of sandwich panel.

PlateWallPlate
Sound absorbing wall

LimpI

L

R

b
LimpII

Pressure load

Figure 5.13: Setup for sound transmission through a characteristic area of a sandwich
panel.

Experiments versus models

Figures 5.14 and 5.15 show the calculated and measured sound transmission
loss of the two panels with resonators in the frequency ranges of 500-3000 Hz
and 500-5000 Hz, respectively. To show more detail, the results are presented
in narrow bands.

For both panels, the measured sound transmission loss is much smaller
than predicted by the one-dimensional analytical model. For the panel with
tubes, the centre frequency of the range in which the transmitted sound is
reduced is predicted fairly well (see Figure 5.14). However, the extra increase
in transmission loss in the frequency range of 500-1200 Hz was not predicted
analytically. This increase is even higher than measured in the frequency
range for which the resonators were tuned. Also, the decrease in transmission
loss for frequencies above 2000 Hz was not predicted analytically. The results
obtained with the full FEM model of one characteristic area show that the
flexibility of the structure is very important to get a better prediction of the
magnitude of the sound transmission loss.

For the sandwich panel, the trends of the measured and analytically cal-
culated transmission loss curves are fairly similar (see Figure 5.15). Around
1541 Hz, where half of the acoustic wavelength equals the thickness of the
panel, both transmission loss curves show a small dip caused by internal res-
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Figure 5.14: Calculated and measured transmission loss of panel with tubes.
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Figure 5.15: Calculated and measured transmission loss of sandwich panel.

onances in the cavities of the honeycomb structure. In addition, the higher
harmonic in the frequency range of 3000-5000 Hz is observed in both results.
However, the frequency belonging to the peak of the measured transmission
loss curve is a little lower than predicted analytically. For the sandwich panel
too, an extra increase in transmission loss is observed in the lower frequency
range, which is not predicted analytically. In the one-dimensional analytical
model, the viscothermal effects have a large influence on the height of the
peaks in the transmission loss curve (see Figure 5.16). In the full FEM model,
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these effects are not included. This leads to an overestimation of the trans-
mission loss, particularly at the frequencies where maximum sound reduction
is obtained. This, however, cannot completely explain the large discrepan-
cies between models and measurement. Other possible reasons are discussed
below.
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Figure 5.16: Sound transmission loss of sandwich panel, calculated with the one-
dimensional analytical model, with and without viscothermal effects.

5.3.3 Discussion

For both panels, the agreement between measurements and models is bad.
This is mainly caused by the fact that there are different factors which play an
important role in the transmission of sound through panels with resonators,
but none of the models includes all these factors. The influences of these
phenomena on the different configurations are briefly discussed below.

• Flexibility of the structure. The fully coupled FEM model of one charac-
teristic area showed that the flexibility of the structure and the interac-
tion with the surrounding air are very important. Because the structure
of the sandwich panel is much stiffer than the panel with tubes, the one-
dimensional analytical model predicts the trends better for the sandwich
panel.

In Section 4.4.2, it was seen that for a porosity of about Ω = 0.5, the
sound transmission loss decreases with increasing flexibility. For a high
transmission loss, a stiff structure is thus desired. Especially the stiffness
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of the resonators is important. However, stiffer panels (of similar weight)
tend to have a lower critical frequency (see below), which can again be
disadvantageous for the sound transmission loss.

The honeycomb structure of the sandwich panel is not modelled in de-
tail. Local effects caused by deformations of the honeycomb cells and
the interaction with the air inside the cells are not included, but can
possibly influence the sound transmission loss. Because the walls of the
honeycomb cells are very thin, transmission of sound in transverse di-
rection could also be possible. This effect is also not included in the
models.

• Viscothermal effects. The resonators of the panel with tubes are rel-
atively wide, so viscothermal effects hardly play a role. However, in
the structure of the sandwich panel, the honeycomb cells are much nar-
rower. Viscothermal effects that are present here, considerably reduce
the height of the peaks in the transmission loss curve because of the
damping that is added. In the FEM models these effects were not in-
cluded, so the transmission loss of the sandwich panel is overestimated
at some frequencies.

• Incident sound field. During the measurements, the panel was excited by
a diffuse sound field, i.e. sound incident from all directions. In the one-
dimensional analytical model and the FEM models presented in Chapter
4, only normal incident sound was considered. One of the effects that
may be caused by obliquely incident sound is coincidence (see below).

• Panel boundaries. In Section 4.2.2, it was seen that for a rigid panel,
placed in an infinite baffle, the boundaries of the panel hardly influence
the radiated sound power if the acoustic wavelength is smaller than the
panel dimensions. However, in the experimental setup the panel is not
baffled, so different boundary effects could play a role. To investigate
this, a more detailed model of the experimental setup is required.

Two other phenomena which can possibly affect the transmission of sound
through a panel with resonators are: acoustic coupling between the resonators
and coincidence. These influences were neither included in the models used
in this section nor thoroughly studied in the present work. However, a brief
discussion follows below.

• Acoustic coupling between the resonators. In the models presented in
this thesis, the acoustic response of the resonators was mostly considered
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separately. However, when multiple resonators are placed close to each
other, acoustic interaction may exist between adjacent resonators and
influence the radiation or transmission of sound. Further research is
required to investigate this effect.

• Coincidence. The coincidence effect is a combination of the effects of
the flexibility of the structure and the incident sound field. Coincidence
occurs if the bending wavelength in the panel is equal to the projected
wavelength of the incident sound wave, the so-called trace wavelength
λtr (see Figure 5.17). In this case, there is a very good coupling of
energy from the incident wave to the bending wave, which makes the
panel radiate sound efficiently to the other side [34]. The panel acts as if
it is transparent to incident sound waves and the sound waves are freely
transmitted [5]. This causes a dip in the transmission loss curve. The
depth of the coincidence dip depends on the damping of the panel.

Transmitted wave front

Incident wave front

λtr =
λ

sin(θ)

λ θ

Figure 5.17: Coincidence effect for a panel without resonators.

The trace wave number of a sound wave incident at an angle θ is ktr =
k sin(θ). In a thin isotropic plate, the free bending wave number is
kb = 4

√
ω2m̄/D. For coincidence to occur, both wave numbers have

to be equal, which leads to the following expression for the coincidence
frequency:

fco =
1

2π

[
c0

sin(θ)

]2
√

m̄

D
(5.18)

where D is the bending stiffness of the panel. Hence, for a given angle
of incidence, there is a unique coincidence frequency and vice versa [20].
The coincidence frequency decreases with the angle of incidence. The
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fact that sin(θ) cannot exceed unity imposes a lower frequency limit on
the coincidence phenomenon, the so-called critical frequency:

fc =
c2
0

2π

√
m̄

D
(5.19)

Equation (5.18) also implies that coincidence cannot occur for normal
incident sound. This is also the reason why this phenomenon is not
observed in the results obtained with the models for normal incidence
sound transmission. Nevertheless, the coincidence effect may be a pos-
sible explanation for the decrease in transmission loss of the panel with
tubes that is measured at frequencies above 2000 Hz.

In thick panels, like honeycomb sandwich panels, transverse shear flex-
ibility also plays a role. Renji derived expressions, including this effect,
for the critical and the coincidence frequencies of thick isotropic plates
based on the Mindlin plate theory [40]. In the measured transmission loss
of the sandwich panel, no effects of coincidence are observed. Because
the stiffness of the sandwich panel is very high, the critical frequency is
far below the frequency range that is considered here.

5.4 Concluding remarks

To validate the models presented in the previous chapters, sound transmission
loss measurements were performed on resonator panels of two different con-
figurations: a panel with tubes and a sandwich panel. The transmission of
sound through a measuring surface of 1.00 × 1.00 m was measured by means
of the sound intensity method.

The measurements demonstrated that by applying tube resonators, sound
transmission can be reduced. Compared with the mass law, a maximum in-
crease in transmission loss of 9.2 dB was obtained for the sandwich panel and
of 7.1 dB for the panel with tubes. In the entire frequency range above the
400 Hz 1/3 OB, the transmission loss of the sandwich panel was both larger
than the mass law and larger than the transmission loss of a sandwich panel
without resonators.

However, for both panels with resonators, the increases were not as large
as predicted by the models. The panel with tubes even showed decreases
in transmission loss in the higher frequency range. The predictions for the
sandwich panel were slightly better because of the higher stiffness of the panel.

To achieve a better prediction of the transmission of sound through panels
with resonators, more detailed, large-scale models are required. It was shown
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that the flexibility of the structure and the interaction with the surrounding air
are very important. In particular, the flexibility of the resonators can decrease
the transmission loss considerably. For narrow tube resonators, viscothermal
effects play a role as well. They mainly decrease the peaks in the transmission
loss curve. Possible influences of the incident sound field, the boundaries of
the panel and acoustic coupling between adjacent resonators should be further
investigated.
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Chapter 6

Conclusions and
recommendations

6.1 Conclusions

In the present work, a new patented concept, as shown in Figure 1.5(b), was
presented for the reduction of sound radiation and sound transmission [55].
It was shown that the sound radiated by and transmitted through panels can
be reduced considerably by the application of tube resonators. In this thesis,
different models and experiments were presented to explore the possibilities
of these resonators. The conclusions that can be drawn from the analyses are
the following:

• Small-scale models of rigid, infinitely large panels predict that by ap-
plying tube resonators, large increases in insertion loss and normal in-
cidence sound transmission loss can be obtained over a broad frequency
range. Experiments on sound radiation in an impedance tube show a
good agreement between the predictions by the models and the mea-
surements.

• Three important parameters that determine the sound insulating prop-
erties of panels with tube resonators are: the length of the resonators,
the porosity of the panel, and (in the case of sound transmission) the
mass of the panel. The centre frequency of the frequency range in which
the sound is reduced is the frequency for which a half, or odd multiples
of a half, of the acoustic wavelength is equal to the resonator length.

• For further investigation on the phenomena that play a role in the ra-
diation of sound by and the transmission of sound through panels with
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tube resonators, different numerical tools were developed. Besides the
aforementioned parameters, other aspects that influence the performance
of these panels are: the flexibility of the plate and the resonators, vis-
cothermal effects, and (in the case of sound transmission) the incident
sound field. Especially the flexibility of the structure has a large effect
on the sound transmission loss. In most cases, the sound transmission
loss decreases with increasing flexibility.

• Sound transmission loss measurements on two panels of different config-
urations demonstrate that by the application of tube resonators, sound
transmission can be reduced. However, the increases in sound transmis-
sion loss are not as large as predicted by the models. None of the models
include all aspects that are important for the respective configurations.
To improve the predictions of sound transmission through panels with
resonators, more detailed, large-scale models are required.

• Sound transmission loss measurements show that the positive effect of
tube resonators on the sound transmission loss is larger for a sandwich
panel than for a single plate. The main reason for this is the higher
stiffness of the sandwich panel.

• Sound transmission loss measurements show that by perforating one of
the skin panels of a common honeycomb sandwich panel, the sound
insulating properties of such a panel can be improved.

6.2 Recommendations

The work presented in this thesis forms the basis for a study on the possible
application of tube resonators for sound insulation. To advance this work,
further research could be carried out on the following topics:

• Two aspects that were not studied in this thesis are the possible influ-
ences of acoustic coupling between the resonators and coincidence (see
also Chapter 5). Further research on these effects may be desirable. An-
other aspect that could be investigated is the influence of damping, both
structural and acoustic.

• To enhance the prediction of sound transmission through honeycomb
sandwich panels, more detailed models (including viscothermal effects)
are needed on the interaction between the honeycomb structure and the
air inside the honeycomb cells.
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• In the present work, different models were presented based on different
assumptions and simplifications. However, none of the models contain
all aspects that play a role in the transmission of sound through the
panels that were tested. Based on the insights gained in this thesis,
different models, or aspects of different models, can be combined to get
more efficient and/or accurate results.

• The performance of the resonators can be tuned for a specified frequency
range by varying the dimensions of the resonators. Once an accurate
model is obtained, an optimisation algorithm could be developed to find
the optimal configuration.

• In the present work, the performance of panels with tube resonators was
assessed by a comparison with the sound insulating properties of panels
of the same mass without resonators. To make a further assessment,
a comparison could also be made with conventional methods of sound
insulation. Examples are porous materials such as glass wool or foam,
different types of resonators such as Helmholtz resonators, thin air layers,
and viscoelastic damping material.

• The application of tube resonators for reducing sound at lower frequen-
cies requires large resonator lengths. Further research could be carried
out to reduce the thickness of the panel, for example, by changing the
geometry of the resonators or by folding them (see also Chapter 2). This
is especially important for environments like aircraft cabins, where space
is limited.

• For the application of tube resonators in practice, further research is
needed for suitable materials and efficient production methods. The
most important properties for the selection of materials are mass and
stiffness.
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Nomenclature

Roman

A, B, C, D Amplitudes of plane sound wave [Pa]
a Resonator diameter [m]
b Width of characteristic area [m]
Cp Specific heat at constant pressure [J/(kg K)]
Cv Specific heat at constant volume [J/(kg K)]
c0 Undisturbed speed of sound [m/s]
ceff Effective speed of sound [m/s]
D Bending stiffness [Nm]
E Young’s modulus [N/m2]
Ee Young’s modulus of resonator end [N/m2]
Ep Young’s modulus of plate [N/m2]
Ew Young’s modulus of resonator wall [N/m2]
f Force vector [N]
f Frequency [Hz]
fc Critical frequency [Hz]
fe Eigenfrequency [Hz]
fco Coincidence frequency [Hz]
G(r, r0) Green’s function [−]
G12 One-sided cross spectrum of two pressure signals [Pa2]
H21 Transfer function of two pressure signals [−]
In Modified Bessel function of the first kind of order n [−]
Īi Time-averaged incident sound intensity [Wm−2]
Īr Time-averaged sound intensity in direction r [Wm−2]
Īref Time-averaged reference sound intensity [Wm−2]
i =

√−1 Imaginary number [−]
Jn Bessel function of the first kind of order n [−]
K Stiffness matrix [N/m]
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Kn Modified Bessel function of the second kind of order n [−]
k Wave number [m−1]
ktr Trace wave number [m−1]
L Resonator length [m]
LI Distance to pressure transducer I [m]
LII Distance to pressure transducer II [m]
Limp Length of impedance tube [m]
Lp Sound pressure level [dB]
LI Sound intensity level [dB]
LW Sound power level [dB]
Ly, Lz Width and height of panel [m]
l Characteristic length scale [m]
M Mass matrix [kg]
m Mass [kg]
m̄ Mass per unit area [kg/m2]
n Polytropic coefficient [−]
P Perimeter [m]
p Pressure vector [Pa]
psurf Pressure vector evaluated close to surface [Pa]
p Pressure [Pa]
p̃ Pressure amplitude [Pa]
p̌ Dimensionless pressure amplitude [−]
p0 Mean pressure [Pa]
pI Pressure measured with pressure transducer I [Pa]
pII Pressure measured with pressure transducer II [Pa]
pref Reference pressure [Pa]
prms Root mean squared pressure [Pa]
q Distributed load [N/m2]
q Volume velocity [m4/s]
r Location vector [m]
r0 Location vector of a point on a surface S [m]
r Coordinate in radial direction [m]
R Resonator radius [m]
R0 Gas constant [J/(mol K)]
Ri Inner radius of cylindrical layer [m]
Ro Outer radius of cylindrical layer [m]
Rimp Radius of impedance tube [m]
S Characteristic area [m2]
S Panel area [m2]
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Se Area of elemental radiator [m2]
Sr Cross-sectional area of resonator [m2]
s Shear wave number [−]
T Temperature [K]
T̃ Temperature amplitude [K]
Ť Dimensionless temperature amplitude [−]
T0 Mean temperature [K]
t Time [s]
te Thickness of resonator end [m]
tp Thickness of plate [m]
tw Thickness of resonator wall [m]
v Fluid velocity [m/s]
v Fluid velocity [m/s]
ṽ Fluid velocity amplitude [m/s]
v̌ Dimensionless fluid velocity amplitude [−]
vs Normal structural velocity [m/s]
W̄ Time-averaged sound power [W]
W̄i Time-averaged incident sound power [W]
W̄ref Time-averaged reference sound power [W]
W̄t Time-averaged transmitted sound power [W]
w̌ Dimensionless fluid velocity amplitude [−]
x, y, z Coordinates [m]
Z Impedance matrix [Pa s/m]
Zsurf Impedance matrix evaluated close to surface [Pa s/m]
Z Impedance [Pa s/m]

Greek

α Free space angle in Helmholtz integral equation [−]
Γ Propagation coefficient [−]
Γfs Interface area [m2]
γ Ratio of specific heats [−]
δ End correction [m]
η Dimensionless radius [−]
ηi Dimensionless inner radius of cylindrical layer [−]
ηo Dimensionless outer radius of cylindrical layer [−]
θ Angle of incident sound [rad]
κ Reduced frequency [−]
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λ Acoustic wavelength [m]
λT Thermal conductivity [J/msK]
λtr Acoustic trace wavelength [m]
μ Dynamic viscosity [Pa s]
μb Bulk viscosity [Pa s]
ν Poisson’s ratio [−]
ξ Dimensionless coordinate [−]
ρ Density [kg/m3]
ρ̃ Density amplitude [kg/m3]
ρ̌ Dimensionless density amplitude [−]
ρ0 Mean density [kg/m3]
σ Square root of Prandtl number [−]
σd Radiation efficiency [−]
τ Transmission coefficient [−]
Ω Porosity [−]
ω Angular frequency [rad/s]

Abbreviations

CV Control volume
CMS Component mode synthesis
DOF Degree(s) of freedom
FEM Finite element method
FFT Fast Fourier transform
GMRES Generalised minimal residual
IL Insertion loss
TL Transmission loss
1/3OB One-third octave band

Miscellaneous

∇ Gradient operator
Δ Laplace operator
Re( ) Real part
Im( ) Imaginary part
x∗ Complex conjugate of x
xT Transpose of x
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xH Hermitian of x (complex conjugate transposed)
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Appendix A

Low reduced frequency
solutions

In this appendix, various low reduced frequency solutions for prismatic tubes
and layers are considered and derived. In Section A.1, viscothermal wave
propagation in a square tube is compared with viscothermal wave propagation
in a cylindrical tube. In Sections A.2 and A.3, solutions for the acoustic
variables are derived for cylindrical layers with different boundary conditions
at the inner and outer boundaries. The solutions presented in the last section
are validated by experiments in an impedance tube.

A.1 Square versus cylindrical tube

In this section, viscothermal wave propagation in a square tube is compared
with viscothermal wave propagation in a cylindrical tube (see Figure A.1).

R

(a) Cylindrical tube.

2c = 2d

2d

(b) Square tube.

Figure A.1: Cylindrical tube and square tube.

For a uniform tube of arbitrary cross-sectional shape, the pressure and the
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fluid velocity, averaged over the cross-section, can be written as:

p(ξ) = AeΓξ + Be−Γξ (A.1)

v(ξ) =
G

ρ0c0

(
AeΓξ − Be−Γξ

)
(A.2)

The propagation coefficient Γ and coefficient G both depend on the cross-
sectional shape and are defined as [48, 49]:

Γ = i

√√√√√γ − (γ − 1)F
(

λT
ρ0Cp

)

F
(

μ
ρ0

) (A.3)

G = iΓF

(
μ

ρ0

)
(A.4)

For a cylindrical tube with radius R, the function F (φ) is given by:

F (φ) = −J2(i3/2R
√

ω/φ)
J0(i3/2R

√
ω/φ)

(A.5)

For a rectangular tube with sides 2c and 2d, the function F (φ) is given by:

F (φ) =
4iω

φc2d2

∞∑
i=0

∞∑
j=0

[
α2

i β
2
j

(
α2

i + β2
j +

iω
φ

)]−1

(A.6)

with:

αi =
(

i +
1
2

)
π

c
βj =

(
j +

1
2

)
π

d
i, j = 0, 1, 2, . . . (A.7)

The definition of the shear wave number is given by equation (2.15). For
a tube of arbitrary cross-sectional shape, the characteristic length scale l in
this expression can be defined by equation (2.27). If the dimensions of both
cross-sections are chosen such that the shear wave numbers are the same, the
same amount of viscothermal effects is present. For tubes with a circular and
a square cross-section, this happens if R = d. In Figures A.2 and A.3 the
propagation coefficient Γ and the coefficient G of a cylindrical and a square
tube are plotted for different values of the characteristic length scale. If the
shear wave numbers are the same and within a physically relevant range, the
cross-sectional shape of the tubes hardly influences the viscothermal wave
propagation. It is also seen that for high frequencies (i.e. large values of the
shear wave number) the solutions converge to the standard acoustic solutions,
i.e. Γ = i and G = −1.
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Figure A.2: Real and imaginary part of propagation coefficient Γ for a cylindrical tube
with radius R and a square tube with sides 2d for different cross-sectional dimensions.
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Figure A.3: Real and imaginary part of coefficient G for a cylindrical tube with radius R
and a square tube with sides 2d for different cross-sectional dimensions.

A.2 Cylindrical layer with axially vibrating inner
wall and symmetry conditions at outer bound-
aries

In this section, the low reduced frequency solution is derived for a cylindrical
layer with an acoustically hard, axially vibrating inner wall and symmetry
conditions at the outer boundaries. A schematic representation of this config-
uration is shown in Figure A.4.
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Ro

vs

r, η, w x, ξ, v Ri

Figure A.4: Cylindrical layer with axially vibrating inner wall and symmetry conditions
at the outer boundaries.

The corresponding boundary conditions are described by equations (2.30)
and (2.31):

v̌ = v̌s , w̌ = 0 , Ť = 0 at η = ηi (A.8)

∂v̌

∂η
= 0 , w̌ = 0 ,

∂Ť

∂η
= 0 at η = ηo (A.9)

With these boundary conditions, equations (2.10) to (2.14) are solved in a
similar way as presented by Tijdeman [50]. The latter equations are given by:

iv̌ = −1
γ

∂p̌

∂ξ
+

1
s2

[
∂2v̌

∂η2
+

1
η

∂v̌

∂η

]
(A.10)

0 = −1
γ

∂p̌

∂η
(A.11)

iκρ̌ = −
[
κ

∂v̌

∂ξ
+

∂v̌

∂η
+

v̌

η

]
(A.12)

p̌ = ρ̌ + Ť (A.13)

iŤ = i
γ − 1

γ
p̌ +

1
σ2s2

[
∂2Ť

∂η2
+

1
η

∂Ť

∂η

]
(A.14)

Low reduced frequency solution

Upon putting v̌ = f(ξ)h(z) with z =
√

isη, equation (A.10) can be rewritten
as:

∂2h

∂z2
+

1
z

∂h

∂z
+ h =

i
γf(η)

dp̌

dξ
(A.15)

with the solution:

h(z) = C1I0(−iz) + C2K0(−iz) +
i

γf(η)
dp̌

dξ
(A.16)

The expressions for the integration constants C1 and C2 are found by applying
the boundary conditions for v̌ as described by equations (A.8) and (A.9). This



Low reduced frequency solutions 137

yields:

v̌(ξ, η) =
i
γ

dp̌

dξ
D(s, η) + v̌s

[
D1(s)I0(

√
isη) + D2(s)K0(

√
isη)

]
(A.17)

with:
D(φ, η) = 1 − D1(φ)I0(

√
iφη) − D2(φ)K0(

√
iφη) (A.18)

and:

D1(φ) =
K1(

√
iφηo)

I0(
√

iφηi)K1(
√

iφηo) + K0(
√

iφηi)I1(
√

iφηo)
(A.19a)

D2(φ) =
I1(

√
iφηo)

I0(
√

iφηi)K1(
√

iφηo) + K0(
√

iφηi)I1(
√

iφηo)
(A.19b)

Equation (A.14) can be solved in a similar way. Application of the boundary
conditions for Ť yields:

Ť (ξ, η) =
γ − 1

γ
p̌D(sσ, η) (A.20)

Substitution of this expression into the equation of state (A.13) gives:

ρ̌(ξ, η) = p̌

[
1 − γ − 1

γ
D(sσ, η)

]
(A.21)

Subsequently, the pressure and the fluid velocity in radial direction are solved
by substitution of equations (A.17) and (A.21) into the equation of continuity
(A.12) and integration with respect to η. With the boundary condition for w̌
described by equation (A.9), this leads to:

w̌(ξ, η) =
ik
η

η2
o − η2

2

{
p̌

[
1 +

γ − 1
γ

M(sσ)
]
− d2p̌

dξ2

1
γ

M(s)
}

(A.22)

with:

M(φ) = −1 +
2

η2
o − η2

1√
iφ

{
D1(φ)

[
ηoI1(

√
iφηo) − ηiI1(

√
iφη)

]
+

−D2(φ)
[
ηoK1(

√
iφηo) − ηK1(

√
iφη)

]}
(A.23)

With boundary condition for w̌ described by equation (A.8), the solution for
the pressure becomes:

p̌(ξ) = ǍeΓξ + B̌e−Γξ (A.24)
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with the propagation coefficient defined as:

Γ =

√
1

N(s)
γ

n
(A.25)

with:

N(φ) = −1 +
2

η2
o − η2

i

1√
iφ

{
D1(φ)

[
ηoI1(

√
iφηo) − ηiI1(

√
iφηi)

]
+

−D2(φ)
[
ηoK1(

√
iφηo) − ηiK1(

√
iφηi)

]}
(A.26)

and the polytropic coefficient given by:

n =
[
1 +

γ − 1
γ

N(sσ)
]−1

(A.27)

By using p0 = ρ0c
2
0/γ, the solutions for the acoustic variables can be written

in dimensional form as:
p(ξ) = AeΓξ + Be−Γξ (A.28)

v(ξ, η) =
iΓ

ρ0c0
D(s, η)

[
AeΓξ − Be−Γξ

]
+

+ vs

[
D1(s)I0(

√
isη) + D2(s)K0(

√
isη)

]
(A.29)

w(ξ, η) =
γ

ρ0c0

ik
η

η2
o − η2

2

[
1 +

γ − 1
γ

M(sσ) − Γ2

γ
M(s)

] [
AeΓξ + Be−Γξ

]

(A.30)

ρ(ξ, η) =
γ

c2
0

[
1 − γ − 1

γ
D(sσ, η)

] [
AeΓξ + Be−Γξ

]
(A.31)

T (ξ, η) = T0
γ − 1
ρ0c2

0

D(sσ, η)
[
AeΓξ + Be−Γξ

]
(A.32)

Polytropic coefficient

The coefficient n can be interpreted as a polytropic coefficient, which relates
the pressure to the density according to:

p̃int

(ρ̃int)
n = C (A.33)
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where C is a constant and p̃int and ρ̃int are integrated over the cross-section.
The polytropic coefficient n is a function of the product sσ. Since this product
does not depend on the viscosity μ, only thermal effects are involved. By
means of a Taylor expansion, the pressure and the density can be linearised
as follows:

p̃int = p0

(
1 + p̌inte

iωt
) → p̃int = p0(1 + p̌int) (A.34)

ρ̃int = ρ0

(
1 + ρ̌inte

iωt
) → (ρ̃int)

n = ρn
0 (1 + nρ̌int) (A.35)

Substitution of these linearised quantities into the polytropic relation (A.33)
yields:

p0(1 + p̌int)
ρn

0 (1 + nρ̌int)
= C (A.36)

By taking the constant C = p0/ρn
0 , the polytropic coefficient can be written

as:

n =
p̌int

ρ̌int
(A.37)

Integrating equation (A.21) and substituting this into equation (A.37) gives
the expression for n as described by equation (A.27). In Figure A.5 the poly-
tropic coefficient is shown for different values of Ri/Ro. For small values of sσ
the polytropic coefficient approaches one, i.e. isothermal conditions. For large
values of sσ the polytropic coefficient approaches γ, i.e. adiabatic conditions.
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Figure A.5: Magnitude and phase of the polytropic coefficient.
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A.3 Cylindrical layer with axially vibrating walls

In this section, the low reduced frequency solution is derived for a cylindrical
layer with acoustically hard, axially vibrating walls. A schematic representa-
tion of this configuration is shown in Figure A.6. The dimensionless velocity
of the harmonically vibrating walls is v̌s = vs/c0. The characteristic length
scale is equal to l = Ro − Ri.

Ro

vs

vs

r, η, w x, ξ, v Ri

Figure A.6: Cylindrical layer with axially vibrating walls.

Low reduced frequency solution

With ηo = Ro/l and ηi = Ri/l defined as the dimensionless inner and outer
radius, respectively, the boundary conditions can be formulated as follows:

v̌ = v̌s , w̌ = 0 , Ť = 0 at η = ηi (A.38)

v̌ = v̌s , w̌ = 0 , Ť = 0 at η = ηo (A.39)

The only difference with the cylindrical layer considered in Section A.2 is
that now also the outer wall is acoustically hard and axially vibrating. By
applying the boundary conditions to equations (A.10) to (A.14), the acoustic
variables can be solved in a similar way. The resulting solutions are the same
as presented in Section A.2. Only D1(φ) and D2(φ) are defined differently
now:

D1(φ) =
K0(

√
iφηi) − K0(

√
iφηo)

I0(
√

iφηo)K0(
√

iφηi) − K0(
√

iφηo)I0(
√

iφηi)
(A.40a)

D2(φ) =
−I0(

√
iφηi) + I0(

√
iφηo)

I0(
√

iφηo)K0(
√

iφηi) − K0(
√

iφηo)I0(
√

iφηi)
(A.40b)

Velocity profile

Figure A.7 shows the influence of the shear wave number on the two terms of
equation (A.29) determining the shape of the velocity profile. The magnitude
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of the expressions is plotted as a function of the dimensionless radius η. The
influence of the shear wave number on the velocity distribution is similar to
that for an axially vibrating cylindrical tube. For large values of the shear
wave number, the solutions of the acoustic variables converge to the solutions
for standard acoustic wave propagation.
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Figure A.7: Magnitude of the two terms of equation (A.29) determining the shape of
velocity profile, plotted for different values of the shear wave number (Ri/Ro = 0.4).

Experimental validation

The low reduced frequency solution as presented above was validated by means
of the experiments in an impedance tube. The procedure used was the same as
described in Section 2.5. Figure A.8 shows the two samples that were tested:
a thin cylindrical air layer and a thicker cylindrical air layer. On the reverse
side of the samples, the layers are closed. The dimensions of the layers, as well
as the distances from the fronts of the samples to the end of the impedance
tube, are listed in Table A.1.

The model of the experimental setup is also the same as described in
Section 2.5. For the pressure and the axial velocity inside the resonator,
equations (A.28) and (A.29) with equation (A.40) are used. Since, in the
literature, no expression was found for the end correction of a cylindrical
layer in a cylindrical tube, the effective resonator length L was determined
empirically. The values of the effective resonator lengths that are used in the
model are also listed in Table A.1.

Figures A.9 and A.10 show the calculated transfer functions pI/vs for both
samples, including and excluding viscothermal effects. In the first case, the low
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(a) Sample 1 (thin layer). (b) Sample 2 (thick layer).

Figure A.8: Photos of the samples for experimental validation.

Lphy [m] L [m] Ro [m] Ri [m] Ω [-] Limp [m]

Sample 1 0.0700 0.0712 0.0220 0.0210 0.07 0.644
Sample 2 0.0700 0.0720 0.0220 0.0180 0.26 0.644

Table A.1: Dimensions of the samples and experimental setup for validation.

reduced frequency solutions are used; in the latter case, the standard acoustic
solutions are used. It can be seen that for both samples the viscothermal effects
have a large, damping influence on the amplitudes of the peaks of the transfer
functions. Since the differences are clearly visible, it can be concluded that
the present experimental setup is suitable for validating the model developed
in this section. For the thin cylindrical layer, more viscothermal effects are
present than for the thick layer. The largest differences are found around the
frequency for which the acoustic wavelength equals a quarter of the length of
the cylindrical layer.

In Figures A.11 and A.12 the calculated and measured transfer functions
are shown for the two samples. Generally, it can be concluded that there is
a good agreement between model and measurement. The amplitudes of the
peaks of the transfer functions, which are mainly determined by the amount
of viscothermal effects, are well predicted. For sample 1, there is only some
discrepancy at the peak around 645 Hz. For sample 2, small discrepancies are
observed above 1370 Hz. The latter ones are mainly caused by the fact that
the sound pressures are so small here that they approximate the noise floor of
the pressure transducers. This makes the measurements less accurate at these
frequencies.
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Figure A.9: Magnitude and phase of calculated transfer functions pI/vs for sample 1,
including and excluding viscothermal effects.
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Figure A.10: Magnitude and phase of calculated transfer functions pI/vs for sample 2,
including and excluding viscothermal effects.
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Figure A.11: Magnitude and phase of calculated and measured transfer functions pI/vs

for sample 1.
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Figure A.12: Magnitude and phase of calculated and measured transfer functions pI/vs

for sample 2.



Appendix B

Acoustic reciprocity and
symmetry

In this appendix, it is investigated whether the models for sound transmission
as presented in Section 2.3.2 satisfy the principles of acoustic reciprocity and
symmetry.

B.1 Acoustic reciprocity

A system is called acoustic reciprocal if the acoustic response remains the same
when source and receiver are interchanged. In the present case, this means
that, if the conditions at both sides of the panel are the same, the orientation
of the panel does not influence the amount of sound which is transmitted
through the panel, i.e. it does not matter whether the resonator openings are
located at the incident side or at the receiving side. To demonstrate this, the
system is represented as an acoustic two-port or four-pole system, as shown
in Figure B.1 [17, 39, 45, 58]. At each terminal two variables are defined: the
pressures p and the volume velocities q. The time-averaged product of these
variables represents the acoustic power fed into the system via those terminals.

qi

vi

pi pj
qj

vj

Acoustic system

Figure B.1: Two-port representation of an acoustic system.
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Since a linear passive system is considered, the acoustic two-port can be
described by the following equations:

pi = Z̃iiqi + Z̃ijqj (B.1a)

pj = Z̃jiqi + Z̃jjqj (B.1b)

where the Z̃ components are frequency dependent quantities which relate the
pressures to the volume velocities. Together they form the so-called impedance
matrix, representing the acoustic properties of the system. The components
are determined by:

Z̃ii =
pi

qi

∣∣∣∣
qj=0

Z̃ij =
pi

qj

∣∣∣∣
qi=0

(B.2a)

Z̃ji =
pj

qi

∣∣∣∣
qj=0

Z̃jj =
pj

qj

∣∣∣∣
qi=0

(B.2b)

where the subscripts qi = 0 and qj = 0 indicate that the respective volume
velocities are blocked. According to the principle of reciprocity, the transfer
impedance between two terminal pairs should be independent of which termi-
nal pair is taken as the input or output terminal [45]. Therefore, it is required
that:

pi

qj

∣∣∣∣
qi=0

=
pj

qi

∣∣∣∣
qj=0

or Z̃ij = Z̃ji (B.3)

In other words, the system is reciprocal if the impedance matrix is symmetric.
For the models presented in Section 2.3.2, the pressures at the two ports are
given by (see Figures 2.10 and 2.11):

pi = p4|xI=0 pj = p2|xII=0 (B.4)

and the volume velocities are defined as:

qi = v4|xI=0 S qj = − v2|xII=0 S (B.5)

By substituting equations (B.4) and (B.5) into equations (2.38) to (2.44), the
system can be written in terms of the two-port variables pi, pj , qi and qj . To
determine the components of the impedance matrix, pi and pj are solved as
a function of qi and qj . If no viscothermal effects are present, the impedance
matrix is symmetric and the system is reciprocal. However, if viscothermal
effects are present, the system is not reciprocal anymore (see also Beranek and
Vér [3]). The same can be proven for the sandwich panel configuration using
equations (2.38) to (2.40) and (2.45) to (2.47).
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B.2 Acoustic symmetry

A special case of acoustic reciprocity is acoustic symmetry1. If a system is
symmetric, it does not matter which terminal is the input terminal and which
is the output terminal [17]. For this, it is required that:

Z̃ii = Z̃jj and Z̃ij = Z̃ji (B.6)

As was seen in the previous section, the latter condition is only satisfied if
no viscothermal effects are present. Using equations (B.2), (B.4), (B.5), and
(2.38) to (2.44), it can be shown that the first condition is only satisfied if
the panel with tubes has a porosity of Ω = 0.5 and no viscothermal effects
are present. For a sandwich panel configuration, acoustic symmetry does not
apply under any condition.

1At least, this is true in the case of a linear passive two-port system with two variables
per terminal.
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Appendix C

Folded resonators

In Section 2.3.1, a one-dimensional analytical model was presented to calculate
the radiation of sound by a panel with tube resonators. It was seen that the
frequency range in which the resonators reduce the radiated sound is deter-
mined by their length. In order to reduce sound at low frequencies, relatively
long resonator lengths are required. For some practical applications, this may
be inconvenient because of limited space. One of the possibilities to reduce
the length of the resonators is by folding them [35]. In this appendix, one-
dimensional analytical models of two types of folded resonators are presented.
Schematic representations of these two configurations are shown in Figure
2.19. The resonator type depicted in Figure 2.19(a) is referred to as a tube-
in-tube resonator. The configuration depicted in Figure 2.19(b) is referred to
as a bent resonator. In the present work, only the effect of these resonators
on sound radiation is considered. In Section C.1, the models of both configu-
rations are presented. In Section C.2, one of the models is validated by means
of experiments in an impedance tube.

C.1 One-dimensional analytical models

The models that are presented in this section are based on the same assump-
tions as described in Section 2.1. The panel is assumed to be rigid and infinitely
large, vibrating with a certain uniform harmonic velocity vse

iωt in normal di-
rection. The dimensions of the characteristic areas are assumed to be small
compared to the acoustic wavelength. Each time, one characteristic area is
considered.
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Tube-in-tube resonator

Figure C.1 shows the model of a characteristic area of a panel with tube-in-
tube resonators. The model consists of three parts: the cylindrical layer, the
cylindrical tube and the radiated sound field in front of the panel. By cou-
pling the one-dimensional analytical models of the different parts, the radiated
sound can be calculated. The influence of the bend is not taken into account
here.

32

1

A2

B2

B3

vs

vs

vs

xI xII

cvIIcvI

A1
B1

Radiated sound wave

Plate

Resonator

L2

L1

Figure C.1: Model of sound radiation by a rigid characteristic area with a tube-in-tube
resonator.

The pressure p1 and the axial velocity v1 inside the cylindrical layer are
described by equation (A.28) and equations (A.29) and (A.40), averaged over
the cross-section, respectively. Inside the cylindrical tube, the pressure p2 and
the axial velocity v2 are described by equations (2.21) and (2.26). For the
pressure p3 and the axial velocity v3 of the radiated sound field, the standard
acoustic solutions are used. The sound fields in both resonator parts are
defined with respect to the axial coordinate xI and the radiated sound field
is defined with reference to coordinate xII (see Figure C.1). The unknown
pressure amplitudes A1, B1, A2, B2, and B3 are determined by the boundary
conditions of the system. Since the sound is radiated to the far field, no
reflection is assumed to take place and the pressure amplitude A3 equals zero.

Assuming that the plate and the resonator vibrate harmonically with the
same normal velocity vs, five boundary conditions can be formulated. The
first boundary condition states that the fluid velocity at the end of the cylin-
drical layer is equal to the velocity of the structure. At the transition of the
cylindrical layer to the cylindrical tube, the pressure is assumed to be contin-
uous. Moreover, conservation of mass is applied for the control volume cvI,
indicated by the dashed lines in Figure C.1. Also, at the entrance of the res-
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onator, the pressure is assumed to be continuous and conservation of mass is
applied for the control volume cvII. All together, these boundary conditions
can be written as:

v1|xI=L1
= vs (C.1)

p1|xI=0 = p2|xI=0 (C.2)

v1|xI=0 S1 + v2|xI=0 S2 = vs (S1 + S2) (C.3)

p2|xI=L2
= p3|xII=0 (C.4)

v2|xI=L2
S2 + vs (S − S2) = v3|xII=0 S (C.5)

where L1, L2, S1 and S2 are the effective lengths and the cross-sectional areas
of the cylindrical layer and the cylindrical tube, respectively, and S is the
characteristic area. By applying the boundary conditions to equations (A.28),
(A.29), (2.21) and (2.26), the unknown pressure amplitudes A1, B1, A2, B2

and B3 can be solved for a given structural velocity vs. Subsequently, the
radiated sound power can be determined with equations (2.50) and (2.51).

Bent resonator

Figure C.2 shows the model of a characteristic area of a panel with bent
resonators. The model consists of three parts: two cylindrical tubes and the
radiated sound field in front of the panel. By coupling the one-dimensional
analytical models of the different parts, the radiated sound can be calculated.
The sound fields in both tubes are defined with respect to the axial coordinate
xI and the radiated sound field is defined with reference to coordinate xII (see
Figure C.2). Again, the influence of the bends is not taken into account here.

1

3

2A2

B2

B3

vs

vs

vs

xI xII

cvII

cvI

A1

B1 Radiated sound wave

Plate

Resonator

L2

L1

Figure C.2: Model of sound radiation by a rigid characteristic area with a bent tube
resonator.
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The only difference between the present model and the model of a charac-
teristic area of a panel with tube-in-tube resonators is the sound field in the
tube indicated by ①. The pressure p1 and the axial velocity v1 are now de-
scribed by equations (2.21) and (2.26). The unknown pressure amplitudes A1,
B1, A2, B2 and B3 are solved by applying the same set of boundary conditions
as for the tube-in-tube resonator.

C.2 Experimental validation

The model for sound radiation by a characteristic area with a tube-in-tube
resonator, as presented in the previous section, was validated by means of
experiments in an impedance tube. Both the procedure and the model of the
experimental setup that were used are the same as described in Section 2.5.
Figure C.3 shows the two samples with folded resonators that were tested.
The dimensions of the resonators, as well as the distances from the fronts of
the samples to the end of the impedance tube, are listed in Table C.1. Ri

and Ro are the inner and outer radius of the cylindrical layer, respectively,
and R is the radius of the tube part of the resonator. The effective length L2

of the tube part of the resonator is determined by adding an end correction
δ, calculated with equation (2.61), to the physical length Lphy2. For both
samples, the length of the transition between the tube part of the resonator
and the cylindrical layer is 5 mm.

(a) Sample 1. (b) Sample 2.

Figure C.3: Photos of the samples for experimental validation.

Figures C.4 and C.5 show the results of the measurements on the two
samples, compared with the analytical results. It can be seen that there is an
excellent agreement between model and measurement.
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Lphy1 [m] Ro [m] Ri [m] Lphy2 [m] R [m] Ω [-] Limp [m]

Sample 1 0.0800 0.0190 0.0160 0.0900 0.013 0.27 0.620
Sample 2 0.0800 0.0190 0.0130 0.0900 0.010 0.16 0.620

Table C.1: Dimensions of the samples and experimental setup for validation.
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Figure C.4: Magnitude and phase of calculated and measured transfer functions pI/vs

for sample 1.
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Figure C.5: Magnitude and phase of calculated and measured transfer functions pI/vs

for sample 2.
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Appendix D

Finite element formulation of
interface element

In this appendix, the mass and stiffness matrices of the acoustic interface
element are derived, which is presented in Section 4.3.2. The interface element
describes both the acousto-elastic interaction and the acoustic behaviour of
the resonators. The general purpose of the interface element is to relate the
pressures in air to the structural displacements of the panel.

A schematic overview of the parameters that are used for the FEM for-
mulation are shown in Figure 4.15. In Section 4.3.2, it was mentioned that
for both sides of the panel the same interface elements can be used. In this
appendix, therefore, only the interface element at the left-hand side of the
panel is considered (see Figure 4.15).

Under the assumptions presented in Section 4.3.2, the distributed load of
the air on the structure and the fluid acceleration can be written according to
equations (4.34) and (4.35):

ql = pl[1 − Ωl + Ωl sec(kL)] + ρ0c0usωΩl tan(kL) (D.1)
ρ0c0al = ρ0c0as[1 − Ωl + Ωl sec(kL)] − plωΩl tan(kL) (D.2)

For discretisation, the pressures p and the normal structural displacements us

are written in terms of vectors with nodal pressures p and nodal structural
displacements u, and vectors with interpolation functions Nf and Ns:

pl = (Nf )T p, us = (Ns)T u (D.3)

The element matrices for the acoustic part of the interface element are obtained
by discretising the wave equation using the Galerkin method. Multiplying the
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equation by a virtual pressure perturbation δp and integrating over the volume
of the domain yields the variation of a functional1 [59]. The mass coupling
matrices follow from the contribution δΠf of the pressure on the boundary of
the domain to this variation:

δΠf =
∫

Γfs

ρ0 δpl al dΓ (D.4)

where al is the outward (out of the air domain) normal component of the fluid
acceleration, and Γfs is the interface area. Substitution of equations (D.2)
and (D.3) into equation (D.4) gives for the characteristic area:

δΠf = −ω2[δp]TMpu
fs(ω) u − ω2[δp]TMpp

fs(ω) p (D.5)

with the mass coupling matrices formulated as:

Mpu
fs(ω) =

∫
Γfs

ρ0 [1 − Ω + Ω sec(kL)] Nf [Ns]T dΓ (D.6)

Mpp
fs(ω) =

∫
Γfs

Ω tan(kL)
ωc0

Nf [Nf ]T dΓ (D.7)

The stiffness coupling matrices follow similarly from the formulation of the
structural part of the standard acousto-elastic interaction problem. By using
equations (D.1) and (D.3), the contribution δΠs of the pressure on the interface
to the variation of the functional can be written as:

δΠs = −
∫

Γfs

δusql dΓ = −ω2[δu]T Kup
fs(ω) p − ω2[δu]T Kuu

fs (ω) u (D.8)

with the stiffness coupling matrices formulated as:

Kup
fs(ω) = −

∫
Γfs

[1 − Ω + Ω sec(kL)] Ns [Nf ]T dΓ (D.9)

Kuu
fs (ω) = −

∫
Γfs

ρ0c0ωΩ tan(kL) Ns [Ns]T dΓ (D.10)

In this case, the different contributions to the interface element are divided into
a mass part and a stiffness part. However, other divisions are also possible.

1A functional is an integral expression that implicitly contains the governing differential
equations for a particular problem. Such an integral expression is also called the weak form
[13].



Appendix E

Data of experimental setup

In Chapter 5, sound transmission loss measurements are described that were
performed on two panels with resonators. In this appendix, some data are
presented of the experimental setup that was used for this. In Section E.1, an
overview is given of the measurement equipment with which the experiments
were performed. In Section E.2, the dimensions are given of the reverberation
room and the niche, as well as of the wooden frames for the suspension. Finally,
in Section E.3, a drawing is shown of the aluminium tubes that were used to
construct the panel with tubes (see Section 5.2.4).

E.1 Measurement equipment

Table E.1 shows an overview of the measurement equipment that was used for
the sound transmission loss measurements as presented in Chapter 5.
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E.2 Dimensions of the experimental setup

A schematic representation of the experimental setup is shown in Figure 5.2.
The reverberation room and the niche are also depicted in Figure E.1. Tables
E.2 and E.3 show the coordinates of the corner points of these two units. The
coordinates of the possible positions of the low frequency sound source are
listed in Table E.4 (see also Figure 5.2).
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Figure E.1: Reverberation room with niche.

Point x [m] y [m] z [m]

1 1.417 -1.966 0
2 -2.320 -1.395 0
3 -1.892 1.465 0
4 1.370 1.515 0
5 1.162 -1.675 3.405
6 -2.280 -1.110 3.135
7 -1.892 1.465 3.135
8 1.060 1.515 3.405

Table E.2: Coordinates of the corner
points of the reverberation room.

Point x [m] y [m] z [m]

1 -0.500 -1.230 1.005
2 0.500 -1.230 1.005
3 0.500 -1.230 2.005
4 -0.500 -1.230 2.005
5 -0.500 -2.090 1.005
6 0.500 -2.103 1.005
7 0.500 -2.110 2.005
8 -0.500 -2.093 2.005

Table E.3: Coordinates of the corner
points of the niche.
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Position x [m] y [m] z [m]

1 1.00 1.20 2.00
2 -1.90 -0.50 1.25
3 0.50 1.10 0.27

Table E.4: Possible positions of low frequency sound source.

Figure E.2 shows the dimensions of the square wooden frames with rubber
strings for the suspension of the panels.

100

100
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82.5 150

225

1200

50
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42

∅11

∅15

Cross-section A-A

A-A

Figure E.2: Dimensions of square wooden frame with rubber string for mounting the
panel [mm].

E.3 Tube dimensions

Figure E.3 shows the dimensions of the aluminium tubes that were used to
construct the panel with tubes (see Section 5.2.4).
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Figure E.3: Dimensions of aluminium tubes.
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Clemens Beijers, Rob Huls, Ekke Oosterhuis, Marten Nijhof, Peter Sloetjes,
Jelmer Wind, Ronald Kampinga, Didem Akçay Perdahcıoǧlu en Emre Dik-
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